Compre com nosso afliado!

domingo, 31 de agosto de 2014

Compondo letras para a educação ambiental: Samantha Lêdo

Em parceria com Felipe Moret, Samantha Lêdo,  dando início a mais uma atividade  artística lúdica em prol da educação ambiental para a coleta seletiva, reciclagem e preservação de nossos ecossistema, no espaço NAVE, que já promove a arte e agora a música como forma lúdica na construção de programas  de educação ambiental.

O Músico e Compositor Felipe Moret, nosso mais novo voluntário e colaborador, já está em Lumiar mostrando seu trabalho na noite da cidade e durante o dia dando a sua contribuição ao nosso projeto, em Boa Esperança em frente ao Poço Belo.  Vamos juntos em busca e na direção da sustentabilidade, promovendo de forma compartilhada e solidária a justiça socioambiental.

Em breve divulgaremos nossas primeiras canções para a ecologia!
Saudações Ecológicas
Samantha Lêdo


segunda-feira, 11 de agosto de 2014

CONVOCAÇÃO - FORUM DA AGENDA 21 LOCAL DE NOVA FRIBURGO


            ESTADO DO RIO DE JANEIRO                                            
            PREFEITURA MUNICIPAL DE NOVA FRIBURGO
            SECRETARIA MUNICIPAL DO MEIO AMBIENTE E
                                  DESENVOLVIMENTO URBANO SUSTENTÁVEL
            AGENDA 21 LOCAL DE NOVA FRIBURGO/COMPERJ
             
   FORUM DA AGENDA 21 LOCAL DE NOVA FRIBURGO
                        Criado pela Lei Municipal nº 3.691, de 20 de março de 2009

                        CONVOCAÇÃO

       A Coordenação Geral e a Secretaria Executiva do FORUM da Agenda 21 Local de Nova Friburgo convocam os membros representantes da sociedade civil organizada e poder público para a ASSEMBLEIA GERAL ORDINÁRIA a ser realizada dia 11 de agosto de 2014, segunda-feira, das 17 h e 30 min às 20 h, no Salão Azul da PMNF , na Av. Alberto Braune, 225, Térreo, conforme calendário previamente aprovado, para cumprimento dos seguintes itens de pauta:
1)    Leitura, debate e aprovação da ata da última reunião;
2)    Roda de conversa – Consumo Sustentável – Patrícia Gouveia;
3)    Breve relato dos GT’s, ComARC e CONLESTE com avaliação da participação dos membros do FORUM nas reuniões comunitárias da REVISÃO DO PLANO DIRETOR (GT e Comissão de Acompanhamento da Sociedade Civil Organizada), entrega dos Informativos 01, 02 e 03;
4)    DIA DA ÁRVORE – proposta do membro ECOMODAS, 2º setor;
5)    Informes e
6)    Assuntos gerais.

      Contando com a importante participação de cada um, cordialmente,
                                                      Nova Friburgo, 6 de agosto de 2014

                                           Gero Band
                                   _______________________________
                                          Gero Band – Coordenação Geral

                           Aparecida Silva/ Rosi / Andrea Sauter
                                   ________________________________________
                                                       Secretaria Executiva



quarta-feira, 23 de julho de 2014

AGROTÓXICOS MATAM ABELHAS EM TODO O BRASIL!!

DIGA NÃO AOS AGROTÓXICOS
Abelhas morrem por pesticidas, constatam pesquisadores

Repórter: ILONÍ KOMMERS BARRIENTOS

                                         

A utilização indiscriminada de pesticidas nas plantações brasileiras tem contribuído para o extermínio de milhões de abelhas de todas as espécies. A fabricação do mel e a produção de frutos e sementes cultiváveis sofrem o impacto da eliminação desses insetos que são altos polinizadores. Padecem o agronegócio e o consumidor.
Os apicultores de Ribeirão Preto e região estão sofrendo a extinção de suas colmeias, isto devido, principalmente, ao veneno que é colocado, através de aviões, sobre as plantações.

Todo pesticida utilizado, nos pomares, nas regiões circunvizinhas, ou ainda, aquele colocado em regiões florestais onde estão as colmeias, causa a morte das abelhas. Esta pode ser aguda ou lentamente, conforme a dose.

O apicultor e removedor de enxames ou colmeia de abelhas, Pedro Assis Caetano, afirma, devido a uma experiência vivida, que a própria cera fabricada por abelhas pode estar envenenada.

A chamada cera “oveolada”, vendida no mercado para ser colocada nas caixas onde se formarão novas colmeias, pode estar contaminada com o pesticida e matar as abelhas. "Eu abri a caixa, tirei a cera e enquanto a distribuía, elas entraram na caixa vazia e foram saindo e morrendo à beira da caixa".

Caetano diz ter perdido dez enxames, entre 800 mil a um milhão de abelhas em apenas uma aplicação de agrotóxicos por avião. O vento trouxe o veneno direto para dentro das colmeias enquanto era jogado na atmosfera pela aeronave.

Muitas pessoas jogam veneno e matam as abelhas, ao constatarem a existência de enxames em suas propriedades. Deve-se levar em conta que um enxame tem de 80 a 200 mil abelhas, dependendo da espécie. E são 40 mil espécies diferentes.

Para Caetano, o "Regente", um pesticida distribuído pela Bayer do Brasil, é o mais atroz operador contra os insetos. Consultada, a Bayer não se manifestou a respeito. O pesticida é usado largamente em pulverizações aéreas e em aplicações diretas sobre os pomares.

A polinização e o agronegócio

Conforme Maria Cecília Rocha, pesquisadora da faculdade de Biologia da Universidade Estadual Paulista (Unesp) em Rio Claro, das 250 mil espécies de plantas que tem flores e frutos existentes no planeta, aproximadamente 90% são polinizadas por animais. Estima-se que 40% desses animais (100 mil) sejam abelhas.

A polinização ocorre na flor da planta. É a transferência do grão de pólen da antera para o estigma ou, diretamente, para o óvulo, sendo essencial para a reprodução, isto é, para obter-se o fruto.

Ainda, segundo a especialista Maria Cecília, o conhecimento, por parte do agronegócio, é muito reduzido quanto à importância das abelhas para a polinização. Dá-se apenas importância comercial ao mel produzido pelas abelhas.

O professor doutor Aroni Sattler, da Universidade Federal do Rio Grande do Sul (UFRGS), diz que um terço da produção de alimentos do mundo é atribuída diretamente à presença dos polinizadores. O dado, segundo Sattler, está disponível na literatura mundial.

Para o Professor, está faltando uma parceria entre pomicultores (produtores de maçãs) e apicultores, no caso da polinização das macieiras, uma vez que o negócio seria bom para ambos. No Rio Grande do Sul, embora não exista um levantamento específico sobre perdas, os pomicultores admitem que, anualmente, perdem entre 10 e 20% da produção. O prejuízo é atribuído a vários fatores, principalmente aos climáticos. Mas sabe-se, diz o professor, que a escassez de polinizadores, pelo uso indiscriminado dos agrotóxicos, é o principal responsável por essas quedas de produção.

Na tangência, o professor doutor Osmar Melaspina e a doutoranda Maria Cecilia Rocha, sua orientanda, declaram que o consumo anual de agrotóxicos no Brasil é superior a 300 mil toneladas de produtos formulados. Nos últimos 40 anos, o consumo de agrotóxicos aumentou 700%, enquanto a área agrícola aumentou apenas 78%.

Desta análise, concluem os pesquisadores, “as abelhas, embora não sejam o alvo desses agentes tóxicos, são altamente vulneráveis à contaminação por forragear nas áreas agrícolas contaminadas”.

Em São Paulo, os produtores de soja admitem que a produção aumenta em 18% quando contam com a presença de abelhas.

Em Iacanga, interior do estado, em agosto de 2010, um fato ligado ao uso do agrotóxico: morreram mais de 250 colmeias e cerca de 10 toneladas de mel foram contaminadas. O incidente ocorreu devido à aplicação incorreta do agrotóxico Fipronil numa plantação de laranjas próxima aos apiários.

Em dezembro do mesmo ano, em Braúna(SP), mais de 500 mil abelhas pereceram. Nesse caso, teriam sido envenenadas pela pulverização de agrotóxico por avião em canaviais. Deste fato, falta confirmação.

Em Santa Catarina,cerca de 100 mil colmeias de abelhas foram dizimadas no ano passado. São bilhões destes insetos exterminados.

Nesse mesmo estado ocorreu um caso em que morreram 35 colônias de abelhas, em dois apiários diferentes. Verificou-se que todas as abelhas estavam mortas ao redor e dentro das colmeias. A análise toxicológica confirmou a intoxicação por inseticidas do grupo dos carbamatos, conforme citação da pesquisadora Maria Cecília Rocha.

“Quando ocorre uma mortandade aguda (redução drástica da população de abelhas por colmeia), normalmente podemos atribuir ao uso indiscriminado de inseticidas na soja, no arroz, na acácia-negra e na fruticultura, através da pulverização e neste caso a pulverização aérea é a mais danosa pelo efeito da deriva”, afirma Sattler.

O cientista explica que a produtividade seria aumentada caso o número de colmeias por hectare fosse adequado (até 10 colmeias por hectare, dados de literatura europeia e americana), porém, como em todo o mundo, desde 2007 está havendo reduções fulminantes das colmeias, em todas as estações do ano.
http://www.uniara.com.br/ageuniara/artigos.asp?Artigo=6226&Titulo=Abelhas_morrem_por_pesticidas,_constatam_pesquisadores

segunda-feira, 14 de julho de 2014

Pesquisas revelam, POLUIÇÃO ENGORDA!!

Assistindo a um programa sobre pesquisas de toxidade, principalmente, no que diz respeito a grupos de substâncias tóxicas em  nosso  meio ambiente e em nossos usos diários, eu descobrí uma revolucionária pesquisa da medicina alternativa moderna, sobre as substâncias químicas  que, interagem conosco através do meio ambiente, estão ligadas diretamente ao aumento de peso. Agora vocês poderão entender por que, neste mundo moderno, A OBESIDADE aumentou demasiadamente desde 1850 (período da nova era industrial) e  a partir daí, modificando as estruturas de nosso DNA, a ponto de, não mais reverter este quadro,vejam como e por quê a informação mais uma vez salva vidas e neste caso também mantém a forma e a saúde.  Fiz algumas anotações declaradas  diretamente pelos especialistas supra citados, e fiquei impressionada na forma em que o meio ambiente mexe integralmente com todas as nossas estruturas e relação a qualquer mudança, e ou inserção de qualquer substância, pode mudar o destino de uma HUMANIDADE.

Ou seja, devemos nos preocupar com a procedência de nossos alimentos e química envolvida no meio ambiente em questão.

CONTEÚDO DESTAQUE

Recibos/Notas Podem Ser Fonte de Disruptor Endócrino: Estudo.

O papel termo impresso usado como notas e recibos contém a substância química Bisfenol A/BPA, um disruptor endócrino. Depois de manipular estas notas/recibos, o BPA foi detectado na urina de todos os participantes de um estudo e a concentração dele nas amostras também cresceu.

A primeira substância é o TREBUTILESTANHO: atua diretamente nas células adiposas e estão sendo chamados pelos cientistas de OBESÓGENOS...ESTUDOS MOSTRAM QUE AGENTES QUÍMICOS INSERIDOS EM NOSSO DIA A DIA EM NOSSO MEIO AMBIENTE, EM QUASE TUDO QUE CONSUMIMOS, PODEM AFETAR O NOSSO SSTEMA ENDÓCRINO(DIGESTIVO)
Bisfenol A - O 1º GRANDE VILÃO, pois putros grupos estão sendo descobertos...

BISFENOL A
http://nutrimari.blogspot.com.br/2011/03/voce-sabe-o-que-e-bisfenol.html
Vejam quantos objetos manipulamos diariamente com estas substâncias

 http://www.ecycle.com.br/component/content/article/35-atitude/613-voce-sabe-o-que-e-bpa-conheca-e-previna-se.html

Anotações:
Toxicólogos da Indústria, endocrinologistas, epidemiologistas e cientistas fazendo pesquisas de substâncias diferentes chegaram a esta conclusão sobre o Bisfenol A, estes médicos supra citados,estão pesquisando novos grupos de substâncias toxicas em nosso meio ambiente que causam aumento de peso, a hipótese também é investigada e pouco divulgada pela NIEHS Instituto de saúde e ciências ambientais dos EUA, começaram a aplicar pequenas doses bem abaixo do limite, de bisfenol A, uma substância contida nas notas fiscais, nos enlatados, nos plásticos, nas tintas, e etc...e já existem pesquisas para outros grupos de substâncias, a indústria química não endossa tais estudos que são guiados pela medicina alternativa, claro!

Estamos falando da mudança do gen - de nosso DNA que está se expressando de forma a orientar as células a dobrarem de tamanho,aumentando
Esta ciência está sendo chamada de EBIGENÉTICA...

A NORUEGA JÁ ESTÁ PESQUISANDO SOBRE OS OBESÓGENOS QUE ESTÃO SENDO INGERIDOS PELA GORDURA DO PEIXE, POIS SEU ESTILO DE VIDA É ECOLOGICAMENTE CORRETO E ELES ESTÃO TAMBÉM COM UM AUMENTO DE PESO, E POR ISTO JÁ INICIARAM SUAS PESQUISAS...

Drª Hamilton
http://www.nossofuturoroubado.com.br/portal/aditivos-plastificantes/a-mae-que-expos-as-conexoes-entre-a-obesidade-e-os-quimicos-comuns
Livros dela sobre o tema:
Toxic Overload
The Body Restoration Plan

Drº Fun Sall

Bruce Blumberg
 Se estes alimentos e toxinas imersas em nosso meio ambiente em quase tudo forem ingeridos até a puberdade seu DNA será modificado, e a partir daí não há mais retrocesso, você pode não aumentar o peso, mas seus filhos virão con esta tendência...Foram testadas cobaias antes e depois do nascimento e todos os efeitos celulares da gestação E COMO ESTAS SUBSTÂNCIAS QUÍMICAS NO ÚTERO  PODEM DESENCADEAR DOENÇAS E CÂNCER(Drº John Challis).  Crianças nascidas de mães fumantes, mesmo que este tenha característica de perda de peso para  o fumante, o seu filho pode ser afetado e o funcionamento inverso cria aumento de peso para o feto e em seu crescimento e desenvolvimento.
Estamos evoluindo conforme Darwin mas para o caminho inverso, estamos involuindo?  A poluição não só extingue a vida, como também a transforma, molda de forma irreversível!!  MEXE EM NOSSO DNA, E ISTO É O PIOR FIM, O QUE VEM DE DENTRO..A POLUIÇÃO ESTÁ AGINDO DIRETAMENTE EM NOSSAS CÉLULAS, EM NOSSO DNA E ISTO É MUITO SÉRIO, HUMANIDADE!!

CONTEÚDO DESTAQUE

A armadilha do PET, artigo de Norbert Suchanek.

Foi na última semana, quando uma amiga me enviou uma foto de seu quintal de permacultura, e com orgulho ela escreveu: “Olha estou reciclando garrafas de PET, utilizando no viveiro para as minhas plantinhas.” A minha amiga se acha ecologicamente correta e consciente, mas sem querer ela entrou na armadilha da grande indústria do plástico e do petróleo.
CONTEÚDO DESTAQUE

Químicos presentes em pasta de dente, protetor solar e sabonete podem causar infertilidade.

Produtos químicos encontrados em itens de uso cotidiano, como pasta de dente, sabonete e protetor solar, além de brinquedos de plástico, estão causando infertilidade em homens, aponta uma nova pesquisa da Universidade de Copenhague, na Dinamarca. Eles alterariam padrões de comportamento dos espermatozoides e dificultariam sua penetração no óvulo (nt.: Destaque de que este pesquisador citado na matéria o Dr. Skakkebaek APARECE DE FORMA DESTACADA NO VÍDEO AGRESSÃO AO HOMEM DE 1995, dizendo exatamente isso … ou seja, confirma o que vem demonstrando há, 20 ANOS!! Só que na notícia não aparece de que estas moléculas além de serem xenestrogênicas, são também obesogênicas e fizeram, nos últimos 30 anos, os níveis de autismo caírem nas estatísticas do ’1º mundo’ de UMA PARA CADA 30 MIL crianças para UMA EM CADA 66, por gerarem efeitos neurológicos que são quase irreversíveis, caso não detectados e tratados nos dois primeiros anos de vida do neonatal).
CONTEÚDO DESTAQUE

Dos ultraprocessados aos alimentos: resgatando a boa nutrição? Entrevista especial com Signorá Konrad.

“Devemos fazer do alimento a base da nossa alimentação”. Esta será a principal recomendação do novo Guia Alimentar para a População Brasileira, ainda em consulta pública, a ser lançado no próximo mês de setembro, informa Signorá Konrad à IHU On-Line. Segundo a nutricionista, apesar de a frase parecer “redundante”, ela propõe justamente uma distinção entre o que são alimentos e o que são produtos ultraprocessados, tais como biscoitos, barras de cerais, sorvetes, enlatados e os demais produtos industrializados, já que “durante muito tempo se tratou os produtos ultraprocessados como alimentos”.
CONTEÚDO DESTAQUE

Venenos Ambientais Conectados ao Aumento do Autismo.

Um estudo recente detectou de que para cada 01 (um)% de aumento em malformações genitais em meninos recém nascidos, havia um aumento associado de 283% quanto ao autismo. Esta correlação entre malformação genital e autismo oferece forte sustentação para a noção de que o autismo é o resultado de uma superexposição parental a tóxicos ambientais. O flúor sozinho que está sendo agregado a muitos suprimentos de água pública em todos os EUA, pode contribuir na queda, em média, de sete pontos no QI de uma criança.

READ MORE…
NEWS ANALYSIS
Programmed to be fat: everyday chemicals linked to obesity and diabetes
Chemicals found in plastics, cosmetics and industry may be altering cells in our bodies, making us more likely to get fat and develop diabetes
NEWS ANALYSIS
Which chemicals are making us fat?
In her book ‘The 21st Century is Making you Fat’ former Ecologist Editor Pat Thomas details the full range of industrial and everyday chemicals known to encourage us to get fat
NEWS ANALYSIS
Medical profession ‘oblivious’ to role of chemicals in diabetes and obesity
US officials are beginning to take a greater interest in the reported links between the exposure to environmental chemicals, like Bisphenol A, with the development of diabetes and obesity
INTERVIEW
Sandra Steingraber: There’s a taboo about telling industry and agriculture that practices must change to prevent cancer
Having survived cancer, biologist Sandra Steingraber wrote a book to expose its link to the environment. As the film version premieres in Europe, she tells the Ecologist why we must all take a stand on air, food and water pollution
INVESTIGATION
The Big Fat Fix
Obesity is a problem that is chronic, stigmatised, costly to treat and rarely curable. Why? Because we are looking in the wrong places for a solution. Pat Thomas reports

quarta-feira, 25 de junho de 2014

Chegou Mel e feijão novinho da região

Agricultura Orgânica Familiar: EMPÓRIO NAVE
Temos também, (Tangerina pokan - Massa de Pizza de massa de aipim - Pães - Ervas,  Geleias) e diversos produtos caseiros feitos na hora...
 
 
 
Temperos, folhas  e Plantas para semear, colher, plantar, levar,
 
 
Refeições Caseiras: Culinária Orgânica, (Vegana, Tradicional brasileira, vegetariana, cheff gourmet)

Para sustentabilidade do Projeto COMUNIDADE SUSTENTÁVEL - Espaço ambiental NAVE
 
Desfrute do Hostel NAVE - Eco Pouso

Na entrada do espaço NAVE temos a nossa loja planeta Eco para a comercialização dos artesanatos, produtos, tecnologias recicladas, e a promoção das ações de educação e projetos futuros, em frente ao Poço Belo, ao lado do Bar e Restaurante Poço Belo, em Boa Esperança - Lumiar 2Km
22 - 2542-4808
 


terça-feira, 27 de maio de 2014

Cooperativas do Rio de Janeiro conquistam dispensa de licença ambiental

Cooperativas do Rio de Janeiro conquistam dispensa de licença ambiental

por Samuel Ferreira — última modificação 14/01/2014 16:43
registrado em: , 
Cooperativas não precisam mais de licença ambiental para operar
Cooperativas do Rio de Janeiro conquistam dispensa de licença ambiental
Cooperativas e Associações de Catadores de Materiais Recicláveis de todo o Estado do Rio de Janeiro já estão isentas da exigibilidade de Licenciamento Ambiental, um dos vários documentos necessários para sua funcionalidade e que muitas vezes travava os processos de trabalho desses empreendimentos. Antiga reivindicação dos catadores organizados - cujos representantes participaram da elaboração do texto final -, a Resolução nº 56, que estabelece os critérios para a decisão, partiu de uma reunião do Conselho Estadual de Meio Ambiente (CONEMA), realizada no dia 13 de dezembro de 2013 e publicada no Diário Oficial em 27 de dezembro.
O documento estabelece critérios para a não exigência de licença ambiental às associações e cooperativas de catadores em suas atividades de recebimento, prensagem, enfardamento e armazenamento temporário de resíduos sólidos recicláveis, tais como papel, metal, plástico e vidro, além de óleo vegetal e gordura residual.
Essa conquista foi fruto de intenso debate dos companheiros do Movimento Nacional dos Catadores de Materiais Recicláveis (MNCR) no Estado, os quais articularam, junto aos representantes da Secretaria de Estado do Ambiente (SEA), a criação de grupos de trabalho para a discussão e formalização da resolução.
De acordo com o catador Vinicius Fonseca, Coordenador de Relações Institucionais do MNCR no Rio de Janeiro e membro da Coop Clean, cooperativa situada no município do Arraial do Cabo, as primeiras conversações a respeito do assunto foram iniciadas com Denise Rosa Lobato, superintendente de Relações Institucionais da SEA, que apoiou a causa dos catadores.
“Começamos a discutir a possibilidade de as cooperativas e as associações de catadores do Estado do Rio de Janeiro não ter essa obrigatoriedade da Licença Ambiental e criamos os grupos de trabalho para formar esse documento. Encontramos muitas forças não querendo que essa isenção fosse somente para os catadores e sim para qualquer um que exercesse a atividade. Iniciamos uma luta com os catadores do MNCR no Rio de Janeiro e travamos esse debate”, afirmou Fonseca.
Para ele, se ainda fosse exigida, a licença ambiental poderia ser um entrave para a prestação de serviços dos catadores ao poder público, já que, por força da Política Nacional de Resíduos Sólidos (PNRS), os municípios brasileiros devem contratar as cooperativas para a Coleta Seletiva.
“Os catadores do Rio de Janeiro têm hoje um grande instrumento na mão, que é a isenção da Licença Ambiental, através dessa luta do MNCR do Rio de Janeiro”, destacou.
Em sua visão, o caso de Gramacho foi um divisor de águas na decisão do Conselho, pois o lixão da cidade funcionou 30 anos sem licença ambiental e, após sua desativação, a prefeitura de Duque de Caxias exigiu o licenciamento ambiental – ao custo de R$ 160 mil - para a construção do Polo de Reciclagem de Gramacho.
“A pergunta que fica e que foi o debate que travamos no Rio de Janeiro: O lixão funcionou 30 anos e pode, a inauguração do Polo foi adiada dois meses por não ter licença: não podia. Então, um dos pontos que levou a esse debate junto ao Governo do Estado foi o porquê de uma atividade que já beneficia o meio ambiente precisar contribuir”, disse, ressaltando que o próprio secretário Estadual do Ambiente e presidente do CONEMA, Carlos Minc, afirmara no Conselho que a atividade exercida pelos catadores deve ser remunerada e não taxada para poder funcionar.
De fato, além dos representantes dos catadores e demais apoiadores, o encontro que aprovou a resolução contou com a experiência e a iniciativa de Minc, que se empenhou pessoalmente na tarefa de convencer os conselheiros do órgão quanto à importância da isenção, uma vez que os galpões das cooperativas colaboram para a redução do impacto ambiental, entre outros benefícios ao meio ambiente.
Segundo Denise Lobato, o fato de o trabalho de armazenamento, enfardamento e comercialização dos resíduos recicláveis prescindir de licenciamento ambiental gera “menos burocracia e mais agilidade para quem precisa trabalhar no ofício, que tão bem vem praticando há tantos anos”.
“Outra preocupação diz respeito à utilização desta regra apenas para as reais cooperativas ou associações de reais catadores que, de forma horizontal e com base nos princípios do cooperativismo e da economia solidária, trabalham para continuar prestando este serviço ambiental”, salientou.
“O tempo e a utilização da medida vão nos mostrar a necessidade de eventuais ajustes”, disse ainda, frisando que um ofício do secretário Minc deve ser enviado a todas as autarquias municipais onde a resolução do CONEMA possua força legal.

quarta-feira, 21 de maio de 2014

História do Plástico


http://www.colegiosaofrancisco.com.br/alfa/plasticos/historia-do-plastico.php

História do Plásticohttp://www.nossofuturoroubado.com.br/arquivos/julho_09/historia_plastico.html

História do Plástico
Tudo começou por volta de 1860 quando o inglês Alexandre Pakers iniciou seus estudos com o nitrato de celulosa, um tipo de resina que ganhou o nome de "Parkesina". O material era utilizado em estado sólido e tinha como características principais flexibilidade, resistência a água, cor opaca e fácil pintura.

Em 1862, ocasião da Exposição Internacional de Londres, Pakers apresentou as primeiras amostras do que podemos considerar o antecessor da matéria-plástica, ponto central de uma grande família de polímeros que nos dias de hoje contém centenas de componentes.

No mesmo ano, o tipógrafo americano John Wesle Hyatt (1837 - 1920) soube de um concurso em Albany, no estado de Nova York (EUA), lançado pela empresa Phelan and Collander, que produzia bolas de bilhar. Quem fosse capaz de desenvolver um material que pudesse substituir o marfim, que estava ficando raro na fabricação das bolas de bilhar, ganharia dez mil dólares. A partir disso, Hyatt começou a pesquisa do marfim artificial ou qualquer novo material que pudesse satisfazer as expectativas da empresa.

Hyatt obteve sucesso em 1870, aperfeiçoando a celulóide - uma versão comercial do nitrato de celulosa com adição de piroxilina, cânfora, álcool, polpa de papel e serragem. Nasceu, então, a primeira matéria plástica artificial. Neste mesmo ano foi inaugurada a primeira fábrica da nova matéria-prima, batizada de Albany Dental Plate Company, nome que provém do fato da celulóide ter sido utilizada primeiramente por dentistas.

Três anos mais tarde (1872), a Dental Plate Company mudou para Celluloid Manufacturing Company. Esta foi a primeira vez que o nome celulóide foi registrado. Por sua facilidade de trabalho, a celulóide foi um sucesso e nos anos posteriores acabou definindo a nomenclatura das matérias plásticas que eram criadas a partir da celulóide.

Em 1920, Hermann Staudinger iniciou seus estudos teóricos de estrutura e propriedade dos polímeros naturais (celulosa e isoprene) e sintéticos. Staudinger mostrou que os polímeros são constituídos de moléculas em forma de longas cadeias formadas a partir de moléculas menores, por meio da polimerização. Anteriormente, se acreditava que os plásticos eram compostos de anéis de moléculas ligados. Porém, as teorias de Staudinger não foram bem aceitas por todos os cientistas e a discussão continuou durante os anos 20.

Por volta dos anos 30 nasceu o poliestireno, que tem como material base o eteno e o benzeno. Mas sua produção comercial só foi iniciada em 1936, na Alemanha.

Em 1949 foi inaugurada a primeira fábrica de poliestireno, a Bakol S.A, em São Paulo. Logo foi iniciada a produção comercial do poliestireno de alto impacto. No início dos anos 60, F.H. Lambert desenvolveu o processo para moldagem de poliestireno expandido. O plástico substitui com vantagens uma série de matérias-primas utilizadas pelo homem há milhares de anos, como vidro, madeira, algodão, celulose e metais. Além disso, ao substituir matérias-primas de origem animal, como couro, lã e marfim, possibilitou o acesso a bens de consumo pela população de baixa renda.

Depois da descoberta do poliestireno, polietileno, PVC, poliamidas (Nylon) e poliéster, o conhecimento dos mecanismos de polimerização contribuiu, nos últimos anos, para o nascimento de outros materiais plásticos com características físico-mecânicas e de alta resistência ao calor, os chamados tecnopolímeros ou polímeros para engenharia.

A partir de 1945, as matérias-primas plásticas entraram com tudo na casa das pessoas, independentemente de condição social. Foi um fenômeno, pois, na época, o aço predominava.

A substituição progressiva dos materiais tradicionais pelas novas substâncias sintéticas mudou o conceito de forma, ergonomia e utilidade dos objetos que o homem estava acostumado a manusear em seu dia-a-dia.

Com a introdução do plástico no mercado mundial novas demandas foram surgindo, como produtos descartáveis, artigos para o lazer, eletroeletrônicos entre outros. No setor de eletrodomésticos, por exemplo, a utilização do plástico está em constante crescimento e evolução.

Nos dias de hoje, o plástico é considerado essencial para o progresso da humanidade. O aperfeiçoamento das tecnologias de transformação viaja na mesma intensidade da história dos polímeros.

Fonte: www.innova.ind.br
A HISTÓRIA DO PLÁSTICO
OS PRIMÓRDIOS DO PLÁSTICO
Em toda a história da humanidade percebe-se que a 'necessidade' é a mola que impulsiona o homem a criar soluções e fazer novas descobertas, com o plástico também foi assim.


Primeiramente, foi Alexander Parkes que em 1862 descobriu um material orgânico derivado da celulose, chamada de parkesina em referência ao seu descobridor, que quando aquecido podia ser moldado e permanecia desta forma quando esfriava. A necessidade de substítuir a borracha que até então era a matéria prima de muitos produtos fez com que a parkesina fosse descoberta, mas o seu custo elevado de produção desestimulou os investidores.

O segundo, foi o tipógrafo americano John Wesley Hyatt que tentando receber o prêmio de dez mil dólares, oferecido pela empresa Phelan and Collander para substituir o marfim na fabricação de bolas de bilhar, esporte tão popular que já ameaçava a população de elefantes, tornando-se necessário a substituição do mesmo. Com este objetivo em vista, Hyatt descobriu acidentalmente que um material a base de nitrato de celulose tornava-se um filme sólido e flexível, estava então descoberta a Celulóide ( originada de fibras de algodão com certos ácidos). Por ser altamente volátil, Hyatt percebeu que poderiam explodir com o choque entre si quando usada em bolas de bilhar, e adicionou cânfora chegando a formulação final da Celulóide que foi registrada no dia 12 de julho de 1870. Jonh W. Hyatt e seu irmão Isiah foram homens inovadores e descobridores de vários inventos que resultaram em mais de 200 patentes e em 1914 ganhou a Medalha de Perkin, mas seu nome ficou registrado na história como o primeiro fabricante de material plástico.


Finalmente, devemos citar o terceiro e mais importante homem que participou na descoberta e consolidação do plástico em nosso mundo, que foi : Leo Hendrik Baekeland o criador da baquelita em 1909. Baekeland após ter ganho dinheiro com a venda do Velox, um papel de impressão fotográfico que podia ser usado sob a luz artificial à Eastman Kodak, dedicou-se a desenvolver um aparato que permitia o controle para variar o calor e a pressão da combinação de ácido carbólico ( fenol ) com formaldeído, que era o grande desafio da época para se fabricar uma resina plástica. Com este feito ele criou a primeira resina totalmente sintética, a Baquelita.

Este material foi empregado para substituir inúmeros materiais naturais provenientes de animais, como marfim, cascos de tartarugas, madeira, etc , fabricando-se pentes, manivelas de facas, botões, bolas de bilhar, materiais elétricos, jóias e em produtos fabricados até hoje com ela.


Existiram várias descobertas nesta época e em partes diferentes do mundo quase que simultaneamente de homens que buscavam novos materiais sintéticos, mas estes três homens traduzem o que de mais importante surgiu para a evolução do plástico como o conhecemos hoje. Para mostrar esta evolução acompanhe a cronologia abaixo:

1835- Regnault apresenta o monômero de cloreto de vinil.
1838- É descoberto o nitrato de celulose.
1839- Charles Goodyear descobre o processo de vulcanização da borracha.
1865- É descoberto o acetato de celulose.
1870- Irmão Hyatt patenteiam a celulóide.
1884- Hilaire Chardonnet inventa a primeira fibra sintética, a rayon de viscose.
1905- Brandenburg inventa a celofane.
1909- Leo Baekeland descobre a baquelita.
1922- Hermann Staudinger sintetiza a borracha.
1928- Ziegler começa a estudar a química orgânica princípio da descoberta do PE e PP.
1929- A empresa Dunlop cria a primeira borracha de espuma.
1931- J. A Hansbeke desenvolve o neoprene.
1933- Primeiros produtos injetados com Poliestireno.
1938- Começa produção comercial de Poliestireno.
1938- Roy Plunkett descobre o PTFE.
1939- ICI patenteia a cloração do Polietileno.
1940- O PMMA começa a ser utilizado na aviação.
1948- George deMestral inventa o Velcro.
1950- O Poliestireno de alto impacto começa a ser produzido comercialmente.
1952- Começa aparecer os primeiros produzidos fabricados em PVC.
1953- O Polietileno de alta densidade começa a ser produzido comercialmente.
1954- O Polipropileno começa a ser desenvolvido com o uso de catalisadores de Ziegler-Natta.
1958- O Policarbonato começa a ser produzido.
1963- Ziegler e Natta ganham o Prêmio Nobel de Química.

A partir de então, a evolução do plástico tomou o rumo das pesquisas de matérias plásticas feitas pela grandes companhias, voltadas para as novas tecnologias de transformação em diversas áreas como a indústria espacial, utilização do plástico que jamais os percursores poderiam imaginar.

Fonte: www.plasticoscarone.com.br
HISTÓRIA DO PLÁSTICO


Os plásticos são materiais sintéticos produzidos a partir de matérias químicas básicas chamadas monômeros. São formados pela união de grandes cadeias moleculares, os polímeros. Do grego, poli, que significa muitas, e mero, partes. Existem polímeros naturais e sintéticos. Os sintéticos são produzidos industrialmente e dão origem aos plásticos. Os polímeros naturais podem ser encontrados em plantas e animais. A madeira, o algodão e o látex são alguns deles.

1838 - O francês Victor Regnault polimeriza o cloreto de vinila (PVC) com auxílio de luz solar.
1839 - O norte-americano Charles Goodyear descobre a vulcanização da borracha natural, possibilitando o uso desse material.
1835-1900 - São desenvolvidos derivados de celulose como o nitrato de celulose, a celulóide, fibras de viscose rayon, entre outros.
1898 - Os químicos Einhor e Bischoff descobrem, por acaso, o policarbonato, que seria desenvolvido apenas em 1950.
1907 - O norte-americano Leo Hendrik Baekeland sintetiza resinas de fenol-formaldeído, que ficariam conhecidas como baquelites. O baquelite é o primeiro plástico totalmente sintético que surge em escala comercial.
1920-1950 - Neste período, são desenvolvidos os polímeros: policloreto de vinila (PVC), polimetacrilato de metila (PMMA), poliestireno (PS), nylon, polietileno, silicone, poliuretano, acrinolitrina butadieno estireno (ABS) e poliéster, além de fibras sintéticas de poliéster e acrílico, entre outros.
1924 - São criadas as fibras de acetato de celulose.
1950 - Os anos 50 são marcados pela popularização da tecnologia de polímeros e pelo surgimento do polipropileno, espumas de poliuretano, polietileno linear, poliacetais e policarbonatos.
1960 em diante - Surgem os plásticos de engenharia, materiais de alto desempenho com diversas aplicações. Também são desenvolvidos, a partir da engenharia de macromoléculas, os elastômeros termoplásticos, além de tanques de combustível e sacos de supermercado feitos em polietileno de alta densidade (PEAD), lentes de contato flexíveis e garrafas de polietileno tereftalato (PET).



Como o plástico invadiu o mundo, nos setores da informação há alguns termos cuja significação nem sempre é bastante conhecida. Comecemos pela definição do que é plástico.
Plástico é a denominação de uma numerosa e prolífica família de materiais sintéticos formados por grandes moléculas. São materiais “amolecíveis” por calor ou solventes e, neste estado, facilmente moldáveis. Aliás, o vocábulo “plástico” indica a relativa facilidade de levar-se tais materiais ao estado plástico. Podem receber aditivos, como estabilizadores, que lhes conferem resistência a ácidos, calor e raios solares, e também pigmentos, que lhes dão as cores e tonalidades desejadas.

A expressão “resina sintética” aparece geralmente associada a plásticos. Faz supor que a resina sintética, elaborada pelos químicos nos laboratórios, é a reprodução servil de uma resina natural. No entanto, as resinas sintéticas que dão origem à maioria dos plásticos, geralmente não são produtos artificiais que copiam com exatidão a estrutura química das resinas encontradas na natureza. Ao contrário, são resinas que não existem na natureza, mas, sim, foram criadas pelo homem após observações e experiências das mais diversas.

Assim, há plásticos que tem como matéria-prima uma resina sintética proveniente, por sua vez, de outras substâncias que, combinadas, lhe deram origem. E também há plásticos que não procedem de resinas sintéticas, mas, sim, de substâncias naturais, como é o caso, por exemplo, da celulose (substância proveniente de vegetais) e da caseína (proteína encontrada no leite).
Monômeros e Polímeros
Na produção de resinas sintéticas entram compostos químicos, como o fenol, formaldeído, uréia, melamina, acetato de vinilo, etileno e outros, conhecidos como monômeros, isto é, são constituídos de moléculas simples. Toma-se um destes materiais monoméricos, ou uma seleção de dois ou mais deles, e faz-se com que as suas moléculas se combinem para formar moléculas maiores (macromoléculas), constituídas, portanto, de grande número de pequenas moléculas combinadas. Essa combinação de moléculas de monômeros é chamada de polimerização e as substâncias decorrentes de tal combinação são chamadas de polímeros. Portanto, polimerização – palavra muito encontrada nas publicações de nossos dias – é uma operação química em que as moléculas iguais ou os conjuntos de moléculas se ligam, formando cadeias compridas ou redes sem que sua estrutura molecular se altere. O produto destas ligações é uma nova substância com propriedades específicas, que podem ser fixadas de antemão.

Exemplifiquemos com o etileno. O etileno é um gás que se desprende da nafta, durante o processo de fracionamento, na indústria petroquímica. As moléculas do etileno se contentam com apenas seis átomos – dois de carbono e quatro de hidrogênio – o que lhes atribui um peso atômico de apenas 28. Com a polimerização, porém, as moléculas em miniatura do etileno se agigantam e se tornam macromoléculas, e o etileno, por sua vez, transforma-se em polietileno, material sólido, com um peso molecular de 60.000.

Os polímeros são a base de grande número de matérias plásticas. De uma forma geral, quanto maiores as moléculas dos polímeros, melhores as propriedades físicas dos plásticos que produzem. Citamos alguns monômeros e, dentro de parênteses, os polímeros que eles formam: fenol, formaldeído (resina de fenol formaldeído), uréia, formaldeído (resina de uréia formaldeído), acetato de vinilo (acetato de polivinilo), etileno (polietileno). Dessa forma, o polietileno é um polímero do etileno (gás extraído do petróleo). O poliestireno é um polímero extraído do estireno (por sua vez, um líquido incolor que pode vir da reação do benzeno com o etileno, na presença de um catalisador, o cloreto de alumínio). O polipropileno é um termoplástico obtido pela polimerização do gás propileno, este extraído do petróleo. Isto, quanto a matérias-primas plásticas.
As Categorias
Quanto aos plásticos, classificam-se em duas categorias: os termoplásticos, que, sob pressão e calor, passam por uma transformação física, não sofrem mutação em sua estrutura química, e se tornam reversíveis, isto é, podem ser reaproveitados em novas moldagens; e termoestáveis ou termofixos, quando sofrem uma transformação química sob efeito de calor e pressão, tornam-se irreversíveis, não podendo ser reaproveitados. Pertencem à primeira categoria os derivados de celulose, PVC rígido e não rígido, polietileno de alta e baixa densidade, polipropileno, poliestireno, policarbonato, “nylon” e outros.

E pertencem à categoria dos termoestáveis os plásticos fenólicos, uréicos, o poliéster e a melamina. Os artigos plásticos são produzidos em máquinas de injeção (armários, assentos sanitários, gaveteiros, garrafeiras), de extrusão (chapas, laminados, tubos), de sopro (frascos, brinquedos), de compressão (também assentos, pratos, xícaras), de calandragem (chapas planas transformadas em onduladas).
O Mundo do Plástico
Não é sem razão que já se convencionou chamar ao nosso tempo de Era do Plástico. Surgido há um século e meio, o plástico evoluiu da posição de sucedâneo à de matéria-prima essencial para um sem número de especificações, e a cada nova necessidade da vida moderna logo emerge das provetas um material sintético mais racional, mais abundante, mais uniforme, mais econômico. A ciência e a técnica trouxeram à luz segredos da natureza escondidos no mundo das reações macrocelulares, e esta epopéia de descobrimentos ainda está longe de chegar ao seu epílogo.

Raros foram os materiais tradicionais que não sentiram a competição do plástico ou mesmo não perderam sua liderança. A borracha sintética substituiu o cautchu; as fibras de “nylon” e outras competem com o algodão, a seda, a lã e o couro; a baquelite, a galalite, o polopás, o poliestireno, o polipropileno e outros tantos ocupam a posição até então indisputada da pedra, da madeira e do ferro; a melamina concorre com a louça e a cerâmica; o PVC, o poliéster e o policarbonato substituem o vidro. Versátil e numeroso, o plástico aparece em todos os campos das atividades dos nossos dias e não há quem possa prognosticar as fronteiras das suas perspectivas.

Já hoje não existe atividade em que o plástico não tenha seu lugar, às vezes modesto, mas em geral prioritário. Ele é remédio e adorno, estrutura e revestimento, brinquedo e ferramenta. O plástico, que começou copiando a natureza, terminou por arrancar-lhe os seus segredos e superá-la, ampliando assim o domínio do homem sobre o mundo que habita e ainda abrindo-lhe caminhos para a própria conquista do espaço.
Cronologia
Reaumur, físico e naturalista francês, que viveu entre l683 e 1757, criador de um termômetro que leva o seu nome e autor de uma monografia sobre “a arte de converter o ferro fundido em aço” previu com bastante antecedência que uma dia se fariam, nos laboratórios, sínteses dos materiais encontrados na natureza. E assim foi, realmente.

Por volta de 1840, Keller, modesto produtor de linho caseiro em Hainichen, na Saxônia, e seu amigo Heinrich Volker, igualmente humilde fabricante de papel cuja matéria-prima eram os trapos recolhidos nas redondezas, partiram de caroços de cereja reduzidos a pó e criaram o papel de polpa de madeira. Era, na realidade, a primeira realização química, prática e com aproveitamento em larga escala da celulose, atrás da qual viriam os mais potentes explosivos, os filmes fotográficos, o “rayon”, os plásticos sintéticos, as lacas e os vernizes.

A celulose é o material de que são formadas as paredes das células de todos os vegetais. É insolúvel na água, no álcool, no éter e em todos os solventes habituais de laboratório, mas se dissolve no ácido sulfúrico , numa solução amoniacal de óxido de cobre, e depois de tratada com soda cáustica, no bissulfeto de carbono. Quimicamente é um hidrato de carbono, parente do açúcar e do amido e reagindo como um álcool. Em forma quase pura, é extraída das fibras do algodão, mas qualquer vegetal a contém: folhas de capim, cascas de árvores, bagaço de cana. Estruturalmente, a celulose é uma dessas moléculas encadeadas e polimerizadas, como a borracha natural.

A década de 1840-50 foi rica de importantes descobertas sobre a celulose. John Mercer, estampador de Blackburn, na Inglaterra, mergulhando panos de algodão num banho de soda cáustica, criou o algodão mercerizado, mais suave ao tacto e mais fácil de tingir. Assim, o algodão mercerizado foi a primeira das numerosas fibras têxteis naturais modificadas pelo homem.

Em 1846, o químico Christian Schönbein, professor na Universidade de Basiléia, tratou o algodão com ácido nítrico e produziu a nitrocelulose, ou o chamado algodão-pólvora. Tal descoberta, porém, ou se perdeu ou não foi devidamente patenteada, e sua autoria é geralmente atribuída ao inglês Alexander Parker, em 1861.

Naquele mesmo ano de 1846, o pintor Louis Nicolas Ménard, desejando obter uma substância para revestir suas telas paisagísticas de Brabizon, dissolveu o algodão-pólvora numa mistura de álcool e éter obtendo uma película de celulose lisa, dura e límpida. Tinha descoberto o colódio, básico para as lacas e vernizes e hoje tão largamente usado...
O Plástico no Mundo
Uma das características mais impressionantes da nossa época é o que se pode chamar de convergência entre a ciência e a tecnologia, ou seja, a distância no tempo entre uma descoberta científica e a sua aplicação tem sido cada vez mais reduzida. Dezenas de anos, no início do século XX, medeavam entre uma descoberta e sua utilização prática. Assim, o aproveitamento do plástico, que até a II Guerra Mundial foi lento, acelerou-se vertiginosamente no quarto de século seguinte.

Um exemplo desse desenvolvimento, inicialmente em ritmo vagaroso, pode ser aquilatado através da importância que ganharam no mercado norte-americano algumas das primeiras resinas sintéticas. Um desses materiais, o PVC (“Poly Vinil Chloryde”), ou cloreto de polivinilo, lançado em 1928, demorou 21 anos, até 1949, para chegar a um faturamento de US$100 milhões e mais 15 anos para triplicar esse faturamento (em 1964, US$277 milhões). O estireno, lançado em 1937, demorou apenas 14 anos para quase quadruplicar essa importância (em 1964, US$362 milhões). E, finalmente, para só citar mais um exemplo, o polietileno, lançado em 1941, demorou 13 anos para chegar a US$100 milhões e apenas 10 anos para quase quintuplicar esse nível (em 1964, US$471 milhões).

Embora criado há um século e meio, o plástico somente alcançou desenvolvimento em escala industrial nas últimas três décadas, ou seja, mais acentuadamente no após-guerra, como dissemos.
Deve-se assinalar que, dentre os vários fatores que contribuíram para aquele desenvolvimento, acelerado nestes últimos vinte e cinco anos, figura prioritariamente o aprofundamento da teoria da química macromolecular, novos métodos de pesquisa, análise e ensaio, que permitiram a formulação das tarefas do químico com muito maior precisão, e também o progresso na construção de equipamentos de transformação que, por sua vez, possibilitaram a produção racional de grandes quantidades de produtos uniformes.

Em matéria de equipamentos, a indústria dos plásticos está bastante adiantada, podendo-se até dizer que o chamado obsoletismo neste setor ocorre de ano para ano. Eles existem em número crescente, de várias procedências, altamente sofisticados. Prensas e injetores moldam, em alguns segundos, peças de grandes dimensões, complexas e com muitos quilos de peso. Além do progresso puramente tecnológico, é notável o aperfeiçoamento dos controles eletrônicos e de computadores. As injetoras mais modernas são equipadas com sistema de autoajustagem, seleção e controle de qualidade, orientados por unidades de computadores.
O Plástico na História
Essa verdadeira revolução – a criação de novas matérias-primas – filha tão legítima da Revolução Tecnológica, não detonou tão revolucionariamente como se poderia supor. Ao contrário, principiou timidamente e caminhou passo a passo, às vezes retrocedendo, até o instante em que, de fato, pôde eclodir e, aí, sim, adquiriu caráter revolucionário.

Até meados do século XIX, existia uma separação intransponível entre a natureza orgânica e a inorgânica. As leis gerais da energia e, até certo ponto, o princípio da evolução de Darwin, começaram a unificar ambos os reinos aos olhos dos estudiosos. Em 1828, Friedrich Woehler, eminente mestre de Gotingue, conseguiu efetivamente, dispensando rins de animais, obter uréia, partindo de matéria inorgânicas. Tal descoberta, pelo menos em teoria, pôs por terra, definitivamente, o divórcio até então existente entre os corpos vivos e os minerais.

Mas as comunicações não eram fáceis como as de hoje, não reinava ainda uma mentalidade científica imune aos preconceitos e, principalmente, não existiam laboratórios de pesquisa, nem o instrumental adequado, nem métodos, nem muito menos uma visão bastante lúcida dos fenômenos químicos e físicos. O que existia era alguma pesquisa nas universidades (Alemanha, França e Inglaterra), mas muitas descobertas se perderam, ou não foram entendidas, ou então demoraram a vir a público, permanecendo como simples curiosidade. Para que serve isto, afinal?

Um exemplo. Quando, segundo o Livro do Êxodo, Moisés tirou os judeus do Egito e levou-os para o deserto, faltou alimento. Mas, certa manhã, apareceu sobre as plantas e o solo algo parecido ao orvalho e que se podia colher e comer antes que o sol o derretesse. Era o “maná” – “o pão que o senhor vos deu para comer” – na explicação de Moisés ao seu povo.

Que coisa era esse maná tão mencionado na tradição mediterrânea, onde há traços vivos da passagem do árabe? – quis saber, em 1806, o químico francês Joseph Louis Proust, então a serviço do rei Carlos IV da Espanha. Pesquisou e descobriu que 60% do maná, uma goma natural, um composto, consistem em álcool (manitol), branco e cristalino, levemente adocicado ao paladar e solúvel na água.

O maná ainda hoje continua a ser colhido nos desertos da Arábia e, sintetizado, figura em xaropes e laxativos. Mas, naquele distante 1806, serviu apenas para dar maior renome a Proust, sem nenhuma conseqüência para a economia espanhola nem para a ciência em geral. Dois séculos antes, Proust teria pago essa heresia com a morte numa fogueira da Inquisição.

Dadas essas condições é que se registram tantos “achados” casuais. O pesquisador, procurando um resultado, dava com outro, às vezes de maior valor, e desistia. Só a pesquisa sistemática, levada a cabo por cérebros privilegiados ou temperamentos muito teimosos é que permitiu, com o tempo, já na última década do século IXX e na primeira do século XX, abrir caminho para a comunhão da física, da química e da matemática, cujas fronteiras entre si já não são bastante definidas, e que juntas formam o fundamento de todas as outras ciências naturais.

Foi, por exemplo, o que aconteceu com o precoce alemãozinho Adolf von Baeyer que, aos 13 anos de idade, em 1848, realizando uma tarefa a pedido do seu mestre de química em Heidelbergue, apanhou uma mancheia de anil natural e, muito simplesmente, separou dele o seu ingrediente corante ativo, a indigotina. Nem por isso mereceu elogios. Só 22 anos mais tarde, Baeyer, superando-se, realizou uma síntese do complexo pó azul, extraindo-o do alcatrão. Mas foi preciso esperar até 1897 para que a sua síntese do índigo entrasse na luta dos corantes travada entre a Alemanha e a Inglaterra.

Friedrich Woehler e m ais alguns poucos homens foram fundamentais para chegarmos à compreensão dos fenômenos físico-qímicos. Um deles é outro alemão, Emil Fischer, que viveu entre 1852 e 1919. Ocupou a cadeira de química em várias universidades de sua pátria e, em Berlim, já no fim do século, como diretor do Instituto de Química, criou uma famosa escola de pesquisadores. Fischer é um dos maiores nomes da química orgânica sintética, pois não apenas formou toda uma geração de pesquisadores, como ainda realizou importantes trabalhos sobre corantes e compostos do grupo uréico, dedicando-se também à síntese de açúcares, proteínas, ácidos, matérias tanantes, graxas e fermentos. Foi um dos pioneiros da química dos ésteres. Prêmio Nobel de Química em 1902. Observe-se que o Nobel foi criado em 1901 e já na segunda vez em que foi atribuído, distinguiu um dos pioneiros do plástico.

O grande químico francês Marcellin Berthelot, professor do Colégio de França e que chegou a senador, ministro da Instrução Pública e do Exterior, consagrou boa parte da sua vida, nos últimos trinta anos do século IXX, a pesquisas de química orgânica, detendo-se particularmente no estudo dos ésteres e da reprodução, em laboratório, dos compostos químicos existentes nos seres vivos. Berthelot realizou grande número de sínteses, como as do álcool, metano e acetileno, e inventou vários aparelhos, um dos quais, o calorímetro de precisão, foi na sua espécie um dos primeiros a figurar no instrumental da nova tecnologia que surgia. Berthelot veio por isso a ser chamado o pai da termo-química – a parte da química que considera o calor o fator integrante das reações. Mas ainda se estava em pleno reino do empirismo. Já se produzira um material sintético, o celulóide, não se sabendo, porém, exatamente, do que e como ele se formara. Somente mais tarde, com os misteriosos raios X é que se sairia da atmosfera do mistério para a compreensão do fenômeno.
Fio Sintético
Em 1850, Charles George, suíço, esteve a ponto de criar a primeira fibra sintética. Um século antes, Cochot e Louis Bon, na França, chegaram a enrolar fios contínuos de “seda de aranha”, realmente extraídos da gosma produzida por esse aracnídeo e, com ele, fabricaram luvas e meias com razoável resistência. Audemars, revendo tal experiência, ferveu a casca interior da amoreira na soda e adicionou-lhe sabão, tratando depois a mistura com cal dissolvida em ácido nítrico, álcool e éter, à qual juntou, finalmente, uma solução de borracha. Assim, obteve um fio ininterrupto, que não se sabe ter chegado ao mercado.

Em 1880, quando preparava chapas fotográficas revestidas de colódio, o conde Hilaire de Chardonnet, em Besançon, produziu a primeira fibra sintética que patenteou com esta explicação, em 1884: “...une matière artificielle ressemblant à la soje”. Naquela cidade mesmo instalou sua própria fábrica de têxteis e, na Exposição de Paris de 1889, apresentou a “seda Chardonnet” com enorme êxito.
Afinal, o “Nylon”
Infelizmente, a seda Chardonnet, extraída da nitrocelulose, era facilmente inflamável e levou a resultados desastrosos. Pouco mais tarde, os ingleses Charles F. Cross e Ernest J. Bevan, submetendo a branca e fiável celulose alcalina ao bissulfato de carbono, obtiveram a viscose. Esta mesma viscose sofreu posteriormente novos tratamentos, como, por exemplo, sua transformação em acetato de celulose, e então surgiram no mercado vários tipos de “rayons” sob marcas diferentes.

Por volta de 1930, os químicos alemães conseguiram dominar a polimerização industrial e, extraindo a acetona do PVC, produziram uma massa de fiação que, pressionada numa tubeira, solidificava-se em fios e fibras. Chamou-se a essa fibra PC, que possuía muitas vantagens, como as de ser insensível a ácidos, água e agentes de putrefação. Infelizmente, não podia servir para vestidos e costumes: a simples lavagem em água quente e o ferro de passar representavam para ela “perigo de vida”.

O criador da fibra inteiramente sintética – liberta da celulose – foi o Dr. Fritz Klatte que, já em 1913, na fábrica de Griesheim, conseguiu produzir em escala industrial o cloreto de vinilo, então só conhecido como preparado de laboratório. No entanto, por essa época, não se sabia como levar o cloreto de vinilo ao estado sólido, de polimerizá-lo de forma racional. Quase nada se sabia sobre substâncias altamente polímeras.

A solução final para toda a indústria sintética de fios foi dada por um jovem e brilhante químico norte-americano, Wallace Hume Carothers que, com seu auxiliar John Hill, em 1929, nos laboratórios da Du Pont, criou o “nylon”, material que não contém a menor parcela de celulose. O “nylon” pertence à família dos termoestáveis – as poliamidas – em cuja composição entram, a grosso modo o fenol, ácido nítrico, óleo de rícino e soda cáustica. Era algo absolutamente novo, virgem. Os mais sóbrios cientistas saudaram o “nylon” de Carothers “como a mais importante descoberta química desde o processo de Fritz Haber para extrair nitrogênio do ar”. A fibra começou a ser vendida às fábricas de meias em maio de 1940.

Quatro anos antes, nos mesmo laboratórios, Carothers, admirável arquiteto de moléculas, criara um produto muito semelhante à borracha natural, o isopreno. A nova molécula foi o cloropreno, devido ao cloreto que continha, em substituição ao hidrogênio do isopreno. Atribui-se a Carothers, por causa do cloropreno e do “nylon”, a consolidação da técnica de polimerização, isto é, o processo de enganchar uma molécula a outra, soldagem molecular que se produz através de calor e pressão, na presença dos mais diversos catalisadores.
Caseína
Já em 1871, o ilustre químico Adolf von Baeyer, famoso pela síntese do anil, investigara as reações de diferentes fenóis e aldeídos, membros de dois grupos que contêm os nossos conhecidos desinfetantes, mas as abandonara, pois formavam substâncias alcatroadas que endureciam em massas resinosas insolúveis. Em torno de 1890, o Dr. Adolf Spitteler, de Hamburgo, vertendo aldeído fórmico na coalhada do leite, obteve um “quadro negro” de cor branca que lhe fora encomendado. Era o primeiro plástico derivado da caseína, que logo teve imediato aproveitamento na indústria de botões.
Enfim, o verdadeiro plástico
As resinas fenólicas – ou fenoplásticos – constituem a primeira família, na genealogia das resinas sintéticas. Por volta de 1870, Leo Hendrik Baekeland, químico e físico belga laureado em quatro universidades de seu país, que chegou aos Estados Unidos no começo do nosso século, criou um papel fotográfico chamado “Velox”, sensível à luz artificial, e cujos direitos vendeu, por um milhão de dólares, a George Eastman, criador da Kodak.

Ora, além de cientista, Baekeland, como vimos, tinha muito tino comercial. Leu e releu tudo quanto havia sobre fenóis e aldeídos. Estava convencido de que o caminho para se descobrir uma goma-laca sintética, com possibilidades comerciais, era a reação do fenol e do aldeído fórmico, ambos abundantes e baratos. Repetiu todas as experiências já conhecidas, com os mesmos resultados desastrosos, formando substâncias alcotroadas, sujas e intratáveis, resistentes a todos os solúveis. Baekeland sabia que todo o segredo se resumia em interromper no instante exato a polimerização (processo pelo qual as pequenas moléculas se engancham como “clips” umas nas outras para formar uma molécula gigante, como já explicamos). Tentou todos os solventes possíveis, juntou à miscela ácidos e álcalis, mas ora obtinha um produto pétreo, ora uma massa esponjosa...

Um dia, deu-lhe um “estalo”. Bem, se o fenol e o aldeído fórmico geravam uma substância tão rija, por que não pesquisar essa virtude, que lhe vinha parecendo um defeito? Deixou de pensar na goma-laca e pôs-se a pesquisar uma resina que pudesse ser fundida e modelada, que fosse imutável no contorno e na substância, enfim, um material que pudesse substituir o marfim dos elefantes nas bolas de bilhar!

Agora, ao invés de empregar meios de retardar a polimerização, Baekeland buscou como apressá-la. Lançou mão do calor. Numa autoclave, a 200 graus C, obteve, afinal, uma massa esférica, cor de âmbar, cuja superfície já era uma impressão exata, em negativo, do fundo da autoclave, inclusive as junturas e as cabeças dos parafusos. Estava criada a baquelite – oriunda do seu nome – que, posteriormente, bastante aperfeiçoada, deu origem a objetos dos mais diversos, inclusive as sonhadas bolas de bilhar. A baquelite foi o primeiro plástico real e inteiramente sintético.
A família começa a crescer
Como todas as famílias prolíficas, a dos plásticos não tardou a crescer. Façamos, embora por alto, a biografia de alguns dos seus descendentes. O acrílico pertence ao grupo das resinas chamadas metacrílicas, cujos polímeros derivam do ácido acrílico. É um material termoplástico. A sua descoberta, os primeiros estudos teóricos, aplicações e primeiras realizações no campo industrial estão ligados ao nome do Dr. Otto Roehm, cuja tese de doutoramento, na Universidade de Tubingem, em 1901, já teve por tema o acrílico. Somente em 1930, entretanto, o acrílico começou a ser industrializado na Inglaterra e na Alemanha.

Arthur D. Little, que não era um especialista, mas um erudito e um homem rico, em 1893, nos Estados Unidos, já fabricava folhas de acetato de celulose. Mais tarde, associando-se a William H. Walker, grande mestre de química industrial, produziu uma película de acetato não inflamável, cuja patente foi vendida a George Eastman.

Em 1910, igualmente, os irmãos Camille e Henry Dreyfus, trabalhando com acetato de celulose de baixa inflamabilidade, já forneciam filmes à Pathé Fréres, uma da pioneiras do cinema. Nesta mesma época, o químico suíço Jacques Edwin Brandenberger criava o celofane, que só muitos decênios mais tarde viria a ter larga utilização como material de embalagem.

O poliestireno aparece na literatura científica por volta de 1839, quando o professor P. L. Simon, da Academia Berlinense de Arquitetura, o obteve casualmente por polimerização espontânea do estireno exposto à luz solar. Por quase um século, não passou o poliestireno de um exercício acadêmico. Não se sabia sequer interpretar a sua síntese, e somente em 1845 os químicos Blyche e Hoffman lograram explicar o processo de polimerização que dava como resultado aquele material.

Finalmente, em 1869, Marcellin Berthelot produziu o estireno monômero partindo do etilbenzeno. Antes disso, o estireno era obtido do estoraque, uma resina odorífera vegetal vinda da Ásia Menor. Dufraisse e Mureau, em 1922, descobriram os agentes inibidores da polimerização, indispensáveis para a conservação do monômero em estado líquido. Entre 1900 e 1911, o poliestireno já era indicado para substituir objetos então fabricados com celulóide, madeira ou ebanite. A sua verdadeira fase industrial, porém, só se iniciou em 1935, quando alemães e americanos passaram a produzi-lo em larga escala.

O cloreto de polivinillo, ou PVC, se obtém através da polimerização do cloreto de vinilo. Este monômero foi sintetizado pela primeira vez em 1835, pelo químico francês Regnault, que não lhe deu importância. Foi o químico Baumann, em 1872, quem pôs em destaque a tendência do cloreto de vinilo a polimerizar-se sob a ação da luz solar, transformando-se num termoplástico. Estas descobertas, porém, não levaram o PVC a ser industrializado.

Na fábrica de Griesheim, ligada a Hoechst, na Alemanha, Fritz Klatte, retornando as experiência de Baeyer e outros, expôs garrafões de éster vinílico líquido à luz solar e obteve uma polimerização natural: uma massa sintética, patenteada em 1913 como “Mowilit”. Submetida a solventes e a evaporações, servia esse material para esmaltes, filmes, fios, etc. Era o acetato de polivinilo, PVA, que viria mais tarde a encontrar tantas aplicações no mundo moderno. Foi o mesmo químico quem descobriu, pela mesma época, a síntese do cloreto de vinilo, partindo do ácido clorídrico gasoso e do acetileno em presença de cloretos metálicos como catalisadores. A produção, em escala industrial, de ambos os materiais só começou em 1933. Os ingleses E. W. Fawcett e R. Gibson foram os primeiros a descobrir traços de polietileno sob a forma de um pó branco. A ICI (Imperial Chemical Industries) o patenteou em 1937. Tratava-se de polietileno de baixa densidade. O de alta densidade foi criado pelo Prof. Ziegler, trabalhando para a Philips Petroleum, patente de 1954.

O policarbonato da família dos poliésteres, tem por pai o Dr. Hermann Schnell, da Bayer alemã. Por ésteres, conhecem-se em química, os produtos de reação dos álcoois e ácidos. São muito freqüentes. As gorduras assimiladas pelo nosso organismo figuram entre os ésteres, isto é, os ésteres da glicerina.

O precursor do policarbonato foi o químico austríaco Alfred Einhorn que, num trabalho puramente acadêmico, fez uma comunicação científica a respeito em 1898. Em 1902, nova comunicação, agora dos químicos Bischoff e Von Hedenstrom. Carothers, de quem falaremos adiante, pouco mais tarde também estudou a matéria. Partiu, em suas experiências, das resinas poliésteres, mas caiu num campo imprevisto, o das poliamidas. O policarbonato passou a ser industrializado em 1956.

O polipropileno, termoplástico que parte do propileno polimerizado, é um dos sintéticos mais recentes. É o primeiro produzido industrialmente no mundo mediante o chamado processo de polimerização estereoespecífica., descoberto e realizado na Politécnica de Milão pelo Professor Giulio Natta que, com Karl Ziegler, químico de Mülheim, mereceu o Prêmio Nobel de Química de 1963. Ambos foram distinguidos por aquela láurea pelas suas descobertas no campo da química e da tecnologia dos polímetros de índice elevado. E se relacionam com métodos fundamentais que permitem edificar macromoléculas orgânicas por polimerização catalítica, a partir de carbonetos simples não saturados.

Muitos outros sintéticos foram em seguida ou ao mesmo tempo criados e comercializados. Pela sua importância, registramos mais este, com as datas em que passaram a ser industrializados em larga escala: melamina, 1935; silicone, 1941; ABS, 1946; epoxy, 1947; poliuretana, 1952; e poliacetal, 1953.
Celulóide
As primeira notícias que se tem a respeito da criação do celulóide, que só parcialmente é um material sintético, nos vêm da França, de estudos levados a cabo por H. Braconnete, em 1833. Registram-se também as experiências de Schönbein, na Alemanha em 1845. Mas quem patenteou o novo artigo, em 1865, resguardando os solventes e plastificantes da chamada nitrocelulose, foi um impressor de Albany, Nova York, de nome John Wesley Hyatt, que com sua descoberta ganhou a medalha “Perkin”, conferida pela “British Society of Chemical Industry”.

Hyatt e seu irmão Isaías obtiveram o celulóide produzindo um caldo de duas partes de nitrato de celulose e uma parte de cânfora, gelatinizando depois a mistura sob pressão, na presença de solventes. Dizem os pesquisadores, comentando tal descoberta, não compreender com Hyatt e o irmão sobreviveram às experiências a que submeteram a nitrocelulose. Alexander Parker, Daniel Spill e outros, mais conscientes da explosividade da mistura, não se atreveram a fazê-lo. Daí Hyatt, que não era um químico, vir a tornar-se o pai da celulóide – um sintético mestiçado, digamos assim – e também o pioneiro da sua industrialização em larga escala.

Por que o fizera? Para ganhar um prêmio então instituído nos Estados Unidos, de 10 mil dólares, para quem inventasse uma substância capaz de substituir o marfim dos elefantes para bolas de bilhar. Hyatt não ganhou o prêmio, mas ganhou muito mais com a produção do celulóide – o arauto da Era Plástica.
Moldagem de Produtos Plásticos
Os produtos plásticos podem ser moldados em vários processos fabris, sendo:

Processos mecânicos de moldagem, onde as diversas resinas poliméricas em formato de grânulos, matéria-prima, depois de aquecidas podem ser processadas pelos métodos de :

Extrusão
A matéria-prima amolecida é expulsa através de uma matriz instalada no equipamento denominada extrusora, produzindo um produto que conserva a sua forma ao longo de sua extensão. Os produtos flexíveis, como embalagens, sacolas, sacos e bobinas também conhecidos como filme, após o processo de extrusão, podem ser gravados sendo modelados o produto final com soldas e cortes. Os produtos rígidos ou semi-rígidos, como tubos, perfis, mangueiras e chapas, tem o mesmo processo, havendo mudança da matéria-prima e matriz.
Injeção
A matéria-prima amolecida pelo calor e sob pressão é injetada através de pequenos orifícios do molde, modelo do produto a ser fabricado, instalado num equipamento denominado injetora. O produto, depois de resfriado suficiente para manter a forma e medidas necessárias, é extraído do molde.
Sopro
A matéria-prima amolecida pelo calor é expulsa através de uma matriz e ou fieira, formando uma mangueira quando o molde fecha sobre esta mangueira é introduzido uma agulha onde o ar é soprado, que força o material a ocupar as paredes ocas do molde, sendo moldada então a peça e após resfriamento extraída.
Injeção / Sopro
Pré-forma
é um processo conjugado de injeção e sopro. Desenvolvido para moldar a matéria-prima PET. A resina Pet tem características muito peculiares, onde o produto pode ser moldado em dois processos distintos, sem comprometer suas características de resistência e transparência. A matéria-prima Pet é injetada mantendo o formato de uma embalagem, sem nenhum ar internamente, denominada preforma. Quando aquecida no segundo processo, dentro do equipamento próprio e especial, o ar é soprado internamente tomando o formato do produto final. Este processo é para produtos de frascaria, usados em refrigerantes, água mineral. Possui alto índice de transparência e bom desempenho no envase de gaseificados.
Rotomolagem
A matéria-prima fluída e sob rotação modela os produtos. Este processo é muito utilizado nas resinas elastoméricas (emborrachado) para produzir cabeças de bonecas, peças ocas, câmeras de bola, grandes contenair, peças rígidas de alta complexidade na extração do molde.
Fundição
é um processo para baixa produção, quase sempre utilizado protótipos. Consiste em despejar a resina líquida adicionada a outras substâncias enrijecedotas dentro de um molde. Na fundição podem ser utilizadas tanto resinas termoplásticas como resinas termorrígidas, mesmo que termofixas, não é empregado aquecimento ou pressão. Este método é usado para a produção de brindes, pequenos adornos, dentre outros.
Termoformagem
Moldagem de produtos a partir do aquecimento de uma chapa de resina termoplástica, que introduzida no molde fixado em uma prensa e acionado molda o produto. A moldagem pode ser feita com a utilização de ar quente, o qual suga a chapa dentro da cavidade ou aquecimento do molde, moldando a chapa sem utilização de ar. Este processo é utilizado na maioria dos produtos de vasilhames descartáveis, como copos, pratos, etc... Existem ainda os processos complementares tipo caladragem com ou sem laminação, onde são agregados outros materiais não plásticos como tecidos, metais para produção de mancais, isolantes, toalhas de mesa, bem como embalagens de várias camadas com papel, metal e outros.
Laminação
Este processo com superposição de materiais como papel, papelão, metais, previamente tratados com resina termoplástica, forma um “sanduíche” que é prensado com aquecimento, proporcionando a aderência total das camadas, resultando em produtos altamente resistentes. Havendo indicação técnica em ter as espessuras uniformes e ou dimensionalmente controladas utiliza-se o sistema de caladragem, ou seja o estiramento por dois ou mais cilindros.

Fonte: www.simpep.com.br

O americano de origem belga Leo Hendrik Baekeland produziu, em 1909, a primeira substância plástica sintética, a baquelita. Foi o início da indústria dos plásticos, que revolucionou a vida cotidiana e criou um dos maiores problemas ambientais do fim do século XX: a eliminação do lixo plástico, que não pode ser reciclado e produz gases tóxicos ao ser incinerado.

Plástico é todo composto sintético ou natural que tem como ingrediente principal uma substância orgânica de elevado peso molecular. Em seu estado final é sólido, mas em determinada fase da fabricação pode comportar-se como fluido e adquirir outra forma. Em geral, os plásticos são materiais sintéticos obtidos por meio de fenômenos de polimerização ou multiplicação artificial dos átomos de carbono nas grandes correntes moleculares dos compostos orgânicos, derivados do petróleo ou de outras substâncias naturais. O nome plástico vem do grego plastikos, "maleável". Os polímeros, moléculas básicas dos plásticos, estão presentes em estado natural em algumas substâncias vegetais e animais como a borracha, a madeira e o couro. Há substâncias, como a celulose, que apesar de terem propriedades plásticas não se enquadram nessa categoria.
Histórico.
Substâncias elásticas extraídas de resinas naturais, como a da seringueira, já eram conhecidas em certas regiões da América, Oceania e Ásia em épocas primitivas. Das crônicas de viajantes europeus medievais, como Marco Polo, constam relatos sobre a existência dessas substâncias, que foram introduzidas na Europa durante o Renascimento. Até o século XIX o aproveitamento desses materiais foi muito pequeno, mas o desenvolvimento da química permitiu seu aperfeiçoamento e o melhor aproveitamento de suas propriedades. Em 1862 o inglês Alexander Parkes criou a parquesina, o primeiro plástico propriamente dito. Sete anos mais tarde John Wesley Hyatt descobriu um elemento de capital importância para o desenvolvimento da indústria dos plásticos: a celulóide. Tratava-se de um material fabricado a partir da celulose natural tratada com ácido nítrico e cânfora, substância cujos efeitos de plastificação foram muito usados em épocas posteriores.

A fabricação dos plásticos sintéticos teve início com a produção da baquelita, no início do século XX, e registrou um desenvolvimento acelerado a partir da década de 1920. O progresso da indústria acompanhou a evolução da química orgânica que, principalmente na Alemanha, permitiu o descobrimento de muitas substâncias novas. Hermann Standinger comprovou em 1922 que a borracha se compunha de unidades moleculares repetidas, de grande tamanho, que passaram a ser chamadas de macromoléculas. Essa comprovação abriu caminho para a descoberta, antes da metade do século, dos poliestirenos, do vinil, das borrachas sintéticas e das poliuretanas e silicones, todos de amplo uso e obtidos a partir de matérias-primas vegetais e minerais.
Constituição dos plásticos.
O mecanismo químico de formação dos plásticos recebe o nome de polimerização e consiste na construção de grandes cadeias de carbono, cheias de ramificações, nas moléculas de certas substâncias orgânicas. A molécula fundamental do polímero, o monômero, se repete um número elevado de vezes por meio de processos de condensação ou adição aplicados sobre o composto. Os polímeros de condensação são obtidos mediante a síntese de um conjunto de unidades moleculares, feita pela eliminação de unidades moleculares, como a água. O mecanismo de adição forma macromoléculas pela união sucessiva de unidades químicas.

Para que ocorram os processos de polimerização é necessário que seja mantida uma temperatura elevada, o que, a princípio, se consegue graças ao caráter exotérmico das reações. Esse desprendimento do calor produzido pela dinâmica interna da própria reação alimenta transformações em cadeia que diminuem, geralmente de modo espontâneo e gradual, até cessar por completo. Em algumas ocasiões se faz necessário o uso de elementos estabilizadores que impeçam reações descontroladas e explosivas. Uma vez formados, os polímeros se mantêm unidos por forças de dispersão, débeis atrações elétricas entre as moléculas e o próprio emaranhado das ramificações moleculares.
Classificação e usos.
As numerosas substâncias plásticas existentes, naturais ou artificiais, são classificadas em dois grandes grupos, chamados de termoplásticos e termoestáveis devido a seu comportamento ante as variações de temperatura. Materiais termoplásticos.

Os materiais termoplásticos são substâncias caracterizadas por sua propriedade de mudar de forma sob a ação do calor, o que permite seu tratamento e moldagem por meios mecânicos. Com o resfriamento, esses materiais recuperam sua consistência inicial. Entre eles estão os derivados da celulose, os polímeros de adição e os polímeros de condensação. Os derivados da celulose são obtidos mediante a adição de substâncias ácidas ou alcalinas à celulose vegetal ou sintetizada. O polietileno, as resinas acrílicas, o vinil, o poliestireno e os polímeros de formaldeído constituem as principais variedades de polímeros de adição com propriedades termoplásticas. O cloreto de polivinila tem um grande número de aplicações, da fabricação de roupas e brinquedos a isolantes elétricos e móveis. As resinas acrílicas são obtidas do ácido acrílico e entre elas sobressai o metilmetacrilato, substância altamente transparente utilizada nas janelas de aeronaves e cujo uso na fabricação de móveis e objetos decorativos se difundiu na década de 1970. Os poliestirenos aparecem em grande variedade e são em geral obtidos por meio da polimerização de uma resina de cor branca. Suas propriedades de dureza, transparência e brilho unidas ao alto poder como isolante elétrico os transformaram num dos materiais mais úteis na fabricação de objetos por injeção em moldes. Já os formaldeídos polimerizados possuem elasticidade e alta resistência a impactos, sendo usados na indústria automotiva e na construção. Entre os polímeros de condensação se destacam os policarbonatos e as poliamidas, como o náilon, muito usadas na indústria têxtil. Diferentes tipos de náilon, obtidos por modificações externas no comprimento das moléculas, são usados também em máquinas.

Materiais termoestáveis.

Os plásticos termoestáveis se amoldam por aquecimento, mas depois de um certo tempo adquirem uma estrutura peculiar na qual endurecem rapidamente e se convertem em materiais rígidos que, se aquecidos em excesso, se carbonizam antes de recuperar a maleabilidade. As poliuretanas, reduzidas a lâminas, são usadas como isolantes térmicos e espumas de recheio em almofadas. Os aminoplásticos, como as resinas de uréia, são transparentes e resistem a pressões externas. Já os plásticos fenólicos, dos quais a baquelita é um dos tipos principais, derivam do fenol ou álcool de benzeno. Os poliésteres são fabricados habitualmente a partir de ácidos e álcoois não saturados e são usados na fabricação de tintas, fibras têxteis e películas. Quanto aos silicones, cadeias moleculares que usam átomos de silício em vez de carbono, são usados na fabricação de lâminas de alta resistência mecânica e de substâncias dielétricas. Devido à inocuidade fisiológica, são muito usados em próteses, para substituir elementos do corpo humano.
Manufatura dos plásticos.
As principais fontes naturais dos plásticos são a celulose, extraída dos vegetais, o carbono e sobretudo o petróleo, o gás natural e seus derivados. Esses materiais são tratados mediante processos de craqueamento, ou ruptura química das cadeias moleculares de que são formados, na presença de catalisadores. Posteriormente, são submetidos à polimerização e outros processos de transformação. Nos processos de tratamento dos plásticos acrescentam-se a sua estrutura determinadas substâncias com a finalidade de manter suas características. Entre elas estão corpos plastificantes, que consistem normalmente de ésteres de elevado ponto de ebulição e baixa volatilidade, que melhoram sua flexibilidade ao incrustar-se nas correntes moleculares dos polímeros. Outros aditivos freqüentes são os estabilizadores e os antioxidantes cujo uso depende do tipo de polímero que se quer obter. Também são adicionados corantes de origem mineral ou orgânica, substâncias anticombustão e elementos de recheio e reforço das cadeias de polímeros.

Existem vários métodos de fabricação de plásticos, tais como a moldagem por aquecimento em molde único, os processos de injeção a vácuo, com ação centrífuga mediante dispositivos giratórios, a termoestabilização em prensas hidráulicas e a extrusão. Este último é o método predominante na indústria e consiste na fusão e compressão da substância plástica, que é introduzida num recipiente capaz de sofrer variações de temperatura. A extrusão também é empregada em lâminas ou películas para a obtenção de finas camadas de polietileno. O método de sopro, que consiste na introdução de ar sob pressão entre lâminas de material termoplástico, é usado na fabricação de corpos ocos.
Outros usos.
Casas inteiras, feitas de plástico, já foram construídas em vários países. No Brasil a primeira foi criada em 1964 por Edgar Duvivier. Os Estados Unidos construíram, para seu pavilhão na Exposição de Osaka, no Japão, a maior bolha de plástico inflável do mundo, com 89m de largura e 155m de comprimento. Bolhas menores, feitas de polietileno, vinil ou náilon, podem ser infladas em poucas horas para uso como abrigos ou armazéns. Bolhas pequenas, do mesmo material, podem ser usadas como almofadas e até substituir camas.

Os plásticos são cada vez mais empregados na indústria automobilística e a empresa alemã BMW foi a pioneira na criação de automóveis com toda a carroçaria feita de um monobloco de plástico. A elaboração dos diversos processos de gravação e reprodução de imagem e som só se tornou possível graças ao uso de plásticos. As fitas de gravação em áudio e vídeo são feitas de polietileno. Há discos feitos de vinil e os filmes fotográficos e cinematográficos são fabricados em celulóide.

Fonte: www.cafebandeira.com.br

As sacolas de plástico podem permanecer mil anos no meio ambiente. Com a quantidade de petróleo necessária para fabricar uma bolsa de plástico, um carro poderia percorrer 115 metros.

Usa-se 70% a menos de energia para reciclar plástico do que para fabricar plástico novo. Na remota ilha Midway, no Oceano Pacífico, encontraram-se restos de sacolas de plástico nos esôfagos de 90% das crias de albatroz. O plástico mata cada ano cerca de 1 milhão de aves marinhas, 100.000 mamíferos e inumeráveis peixes. Em Bangladesh, Taiwan, Austrália, África do Sul e algumas zonas da Índia, é proibido o uso de certo tipo de sacolas de plástico nas lojas.

Na Irlanda e Dinamarca existe um imposto pelo uso de sacolas de plástico, para reduzir seu consumo. O presidente do Clean Up the World, Ian Kiernan, fundou a campanha ao notar enquanto navegava ao redor do mundo, a quantidade de plástico e resíduos que bóia no oceano. Exija que seu supermercado use sacolas biodegradáveis que já existe no mercado.

Hoje o plástico faz parte de nossa vida. Observando o ambiente, nota-se que grande parte dos utensílios - dos óculos à sola de sapato, do móvel de cozinha ao painel do automóvel - é feita deste material.
MAS DE ONDE VÊM OS PLÁSTICOS?
O plástico vem das resinas derivadas do petróleo e que pode ser moldado de várias formas, sem se quebrar. Pertence ao grupo dos polímeros, moléculas muito grandes, com características especiais e variadas.

Algumas das razões para tanto sucesso do plástico são sua leveza (o que facilita o transporte), o fato de ser maleável e não se estilhaçar quando se quebra.

As sacolas de plástico podem permanecer mil anos no meio ambiente. Com a quantidade de petróleo necessária para fabricar uma bolsa de plástico, um carro poderia percorrer 115 metros. Usa-se 70% a menos de energia para reciclar plástico do que para fabricar plástico novo. Na remota ilha Midway, no Oceano Pacífico, encontraram-se restos de sacolas de plástico nos esôfagos de 90% das crias de albatroz. O plástico mata cada ano cerca de 1 milhão de aves marinhas, 100.000 mamíferos e inumeráveis peixes. Em Bangladesh, Taiwan, Austrália, África do Sul e algumas zonas da Índia, é proibido o uso de certo tipo de sacolas de plástico nas lojas. Na Irlanda e Dinamarca existe um imposto pelo uso de sacolas de plástico, para reduzir seu consumo.

O presidente do Clean Up the World, Ian Kiernan, fundou a campanha ao notar enquanto navegava ao redor do mundo, a quantidade de plástico e resíduos que bóia no oceano. Exija que seu supermercado use sacolas biodegradáveis que já existe no mercado.

Hoje o plástico faz parte de nossa vida. Observando o ambiente, nota-se que grande parte dos utensílios - dos óculos à sola de sapato, do móvel de cozinha ao painel do automóvel - é feita deste material.
TIPOS DE PLÁSTICOS
Existem muitos tipos de plásticos. Os mais rígidos, os fininhos e fáceis de amassar, os transparentes, etc.. São divididos em dois grupos de acordo com as suas características de fusão ou derretimento: termoplásticos e termorígidos. Os termoplásticos são aqueles que amolecem ao serem aquecidos, podendo ser moldados, e quando resfriados ficam sólidos e tomam uma nova forma.

Esse processo pode ser repetido várias vezes. Correspondem a 80% dos plásticos consumidos. Os termorígidos ou termofixos são aqueles que não derretem e que apesar de não poderem ser mais moldados, podem ser pulverizados e aproveitados como carga ou serem incinerados para recuperação de energia.

A RECICLAGEM ...
O plástico pode ser reaproveitado de três maneiras:
RECICLAGEM ENERGÉTICA
- ele é queimado liberando um calor muito forte (superior ao do carvão e próximo ao produzido pelo óleo combustível) que é aproveitado na forma de energia.
RECICLAGEM QUÍMICA
– ele é "desmontado" por aquecimento e a matéria-prima pode então ser utilizada novamente na indústria petroquímica.
RECICLAGEM MECÂNICA
- no Brasil, é a mais utilizada; é mais barata e mantém uma boa qualidade do produto: Para facilitar a separação dos materiais plásticos para a reciclagem, foram estabelecidos códigos para diferenciar cada tipo.
Alguns exemplos dos tipos mais utilizados:
PET - (polietileno tereftalado) - garrafas de refrigerante, sucos e óleo de cozinha, Essas embalagens são transparentes e fabricadas em diversas cores.

PEAD - (polietileno de alta densidade) - frascos de shampoo e maquiagem, baldes, utensílios domésticos.
V ou PVC - (policloreto de vinila) - tubos e conexões de encanamento; alguns frascos de detergente, pastas para material escolar, calçados. É mais rígido, porém resistente.

PEBD - (polietileno de baixa densidade) - plástico "filme" - sacos plásticos de lixo, brinquedos. São finos e bastante flexíveis. PP - (poliproprileno) - plásticos "filme" de proteção de alimentos, peças de automóveis.

PS – (poliestireno) - copos plásticos; sacos de batata. OUTROS – Utilizados em eletrodomésticos, aparelhos telefônicos, revestimentos diversos, pisos, etc.

Fonte: www.cafebandeira.com.br
A HISTÓRIA DO PLÁSTICO E SUA RECICLAGEM
Desde 1862, quando o inglês Alexandre Parker produziu o primeiro plástico, a fabricação de produtos com a utilização dessa matéria-prima nunca mais parou. Hoje o plástico é considerado um material de fabricação de produtos de alta resistência, durabilidade e de baixo custo. A preferência pelo plástico também é dada à praticidade de conservação do produto, que muitas vezes até pode ser de finalidade descartável. Porém, quando ocorre o descarte irregular do plásticono ambiente, este torna-se nocivo devido a sua demorada decomposição, as diversas formas de poluição por ele geradas, problemas ambientais e urbanos, e por propiciar o surgimento de doenças, tais como Dengue e Tétano. No entanto, uma saída responsável e eficiente é a reciclagem que além de beneficiar o meio ambiente, diminui a demanda de extração natural e dos resíduos plásticos que são acumulados no lixo. Esse processo de reciclagem do plástico é bem simples, quando comparado com o processo de remediação decorrentedo seu impacto em longo prazo gerado no meio ambiente, além de ser bem significativo para melhora da qualidade de vida.
Simbologia da Reciclagem:


Fonte: apiceplastic.com.br



Plástico está, nas suas mais diversas formas, presente no dia-a-dia de cada um de nós e, na maioria das vezes, nem damos conta da sua importância nos mais ínfimos aspectos da vida humana. O Plástico é indissociável do estilo de vida moderno, e este extraordinário material conseguiu, ao longo dos últimos 150 anos, mudar radicalmente a sociedade em que vivemos, contribuindo para o aumento do nível de vida e bem-estar geral: se pensarmos nos avanços tecnológicos, na medicina cirúrgica, ou mesmo na Internet, é fácil concluir que nada disso seria possível sem o Plástico...

A prova cabal de que o material do Século XXI é o Plástico está à frente dos nossos olhos, bastando para tal contar quantos dos objectos que nos rodeiam neste preciso momento são de plástico...

Existem, hoje em dia, mais de 1000 plásticos diferentes, usados para os mais diversos fins.
Mas afinal, o que é o Plástico?
A palavra plástico tem origem no grego plastikos, que significa moldáveis, uma característica essencial destes materiais. Os plásticos são materiais constituídos por longas cadeias de moléculas chamadas polímeros.
Classificação (por propriedades físicas)
Termoendurecíveis: ganham forma de produtos rígidos por acção do calor e de reacções químicas e não são susceptíveis de serem moldados novamente por acção do calor;

Elastómeros: vulgarmente conhecidos como borrachas, podem ser classificados em dois grandes grupos, as naturais (por exemplo, Látex) e as sintéticas (por exemplo, SBR);

Termoplásticos: amolecem quando aquecidos e endurecem de novo quando arrefecem, o que permite moldá-los sucessivas vezes. Mais de 80% dos plásticos vulgarmente utilizados são deste tipo.
A TRANSFORMAÇÃO DO PLÁSTICO
No final do processo de polimerização, ao polímero poderão ser adicionados alguns aditivos de modo a conferirem: as propriedades desejadas. Abaixo são referidos alguns dos tipos de aditivos mais usados na indústria de plásticos

Estabilizantes e anti-oxidantes - evitam a degradação;

Pigmentos - dotam o plástico da cor desejada;

Plastificantes - conferem maior flexibilidade;

Materiais minerais - rigidificam ou modificam o aspecto, a textura;

Agentes anti-estáticos - reduzem a atracção de poeiras devido à electricidade estática;

Agentes anti-UV - limitam a degradação do plástico por acção da luz;

Agentes de expansão - tornam o plástico mais leve;

Agentes anti-fogo - dotam o plástico de maior resistência ao fogo.

VANTAGENS DO PLÁSTICO
• O Plástico tem infinitas possibilidades de utilização
• O Plástico é um material higiénico e asséptico
• O Plástico é um óptimo isolante térmico
• O Plástico é um material leve
• O Plástico é flexível e maleável
• O Plástico é um material resistente
• O Plástico é durável e fiável
• O Plástico é reutilizável
• O Plástico é reciclável


PLÁSTICO E MEIO AMBIENTE
É Preciso Esclarecer!
Nem sempre o que se diz corresponde à verdade, e muitas são as ideias erradas que existem relativamente ao plástico na sua relação com o Meio Ambiente:
XA produção de plástico contribui para o esgotamento das reservas de petróleo;
üApenas 4% do petróleo consumido no mundo ocidental se destina à produção de plásticos.
XA produção de plástico é altamente poluente;
üCom a utilização da tecnologia apropriada, a produção de plástico é totalmente eficiente, pois não há desperdício: os restos de plástico voltam a entrar no processo produtivo, os gases emitidos na sua produção são aproveitados, etc.
XA produção e utilização do plástico faz desperdiçar energia;
üNa fabricação de plástico consome-se actualmente menos 40% a 70% de energia do que há 20 anos atrás.
O plástico é o material mais usado nos equipamentos de produção de energias alternativas, como a energia eólica e a energia solar... ou ainda nos veículos verdes, pela sua leveza uso eficiente dos combustíveis.
XOs plásticos no final do ciclo de vida servem apenas para poluir o meio ambiente;
üPelo contrário, na Europa Ocidental o ciclo de vida do plástico, através da reciclagem é cada vez mais prolongado, e o plástico é, por si só, uma valiosa fonte alternativa de energia.

Fonte: www.intraplas.pt

Plástico
Plásticos são materiais formados pela união de grandes cadeias moleculares chamadas polímeros que, por sua vez, são formadas por moléculas menores denominadas monômeros. A origem da palavra plástico vem do grego plastikós, que significa adequado à moldagem.
Plástico é um material hoje utilizado em quase todos os setores da economia, tais como: construção civil, agrícola, de calçados, móveis, alimentos, têxtil, lazer, telecomunicações, eletroeletrônicos, automobilísticos, médico-hospitalar e distribuição de energia.
Os plásticos são reunidos em sete grupos ou categorias:
PET (polietileno tereftalato) PEAD (polietileno de alta densidade) PVC (policloreto de vinila) PEBD (polietileno de baixa densidade) PP (polipropileno) PS (poliestireno) Outros (ABS/SAN, EVA, PA, PC). .
O símbolo da reciclagem com um número ou uma sigla no centro, muitas vezes encontrado no fundo dos produtos, identifica o plástico utilizado.
Reciclagem
A reciclagem mecânica consiste na conversão dos descartes plásticos pós-industriais ou pós-consumo em grânulos que podem ser reutilizados na produção de outros produtos, como sacos de lixo, solados, pisos, conduítes, mangueiras, componentes de automóveis, fibras, embalagens não-alimentícias e muitos outros.
Principais etapas para produção do plástico granulado
SEPARAÇÃO
Separação em uma esteira dos diferentes tipos de plásticos, de acordo com a identificação ou com o aspecto visual. Nesta etapa são separados também rótulos de materiais diferentes, tampas de garrafas e produtos compostos por mais de um tipo de plástico, embalagens metalizadas, grampos, etc. Por ser uma etapa geralmente manual, a eficiência depende diretamente da prática das pessoas que executam esta tarefa. Outro fator determinante da qualidade é a fonte do material a ser separado, sendo que aquele oriundo da coleta seletiva é mais limpo em relação ao material proveniente dos lixões ou aterros.
MOAGEM
Após separados os diferentes tipos de plásticos, estes são moídos e fragmentados em pequenas partes.
LAVAGEM
Após triturado, o plástico passa por uma etapa de lavagem com água para a retirada dos contaminantes. É necessário que a água de lavagem receba um tratamento para a sua reutilização ou emissão como efluente.
AGLUTINAÇÃO
Além de completar a secagem, o material é compactado, reduzindo-se assim o volume que será enviado à extrusora. O atrito dos fragmentos contra a parede do equipamento rotativo provoca elevação da temperatura, levando à formação de uma massa plástica. O aglutinador também é utilizado para incorporação de aditivos - como cargas, pigmentos e lubrificantes.
EXTRUSÃO
A extrusora funde e torna a massa plástica homogênea. Na saída da extrusora, encontra-se o cabeçote, do qual sai um "espaguete" contínuo, que é resfriado com água. Em seguida, o "espaguete" é picotado em um granulador e transformado em pellet (grãos plásticos).
Plástico
Plásticos são materiais formados pela união de grandes cadeias moleculares chamadas polímeros que, por sua vez, são formadas por moléculas menores denominadas monômeros. A origem da palavra plástico vem do grego plastikós, que significa adequado à moldagem.
Plástico é um material hoje utilizado em quase todos os setores da economia, tais como: construção civil, agrícola, de calçados, móveis, alimentos, têxtil, lazer, telecomunicações, eletroeletrônicos, automobilísticos, médico-hospitalar e distribuição de energia.

Os plásticos são reunidos em sete grupos ou categorias:
PET (polietileno tereftalato) PEAD (polietileno de alta densidade) PVC (policloreto de vinila) PEBD (polietileno de baixa densidade) PP (polipropileno) PS (poliestireno) Outros (ABS/SAN, EVA, PA, PC). .

O símbolo da reciclagem com um número ou uma sigla no centro, muitas vezes encontrado no fundo dos produtos, identifica o plástico utilizado.
Reciclagem
A reciclagem mecânica consiste na conversão dos descartes plásticos pós-industriais ou pós-consumo em grânulos que podem ser reutilizados na produção de outros produtos, como sacos de lixo, solados, pisos, conduítes, mangueiras, componentes de automóveis, fibras, embalagens não-alimentícias e muitos outros. Principais etapas para produção do plástico granulado
SEPARAÇÃO
Separação em uma esteira dos diferentes tipos de plásticos, de acordo com a identificação ou com o aspecto visual. Nesta etapa são separados também rótulos de materiais diferentes, tampas de garrafas e produtos compostos por mais de um tipo de plástico, embalagens metalizadas, grampos, etc. Por ser uma etapa geralmente manual, a eficiência depende diretamente da prática das pessoas que executam esta tarefa. Outro fator determinante da qualidade é a fonte do material a ser separado, sendo que aquele oriundo da coleta seletiva é mais limpo em relação ao material proveniente dos lixões ou aterros.
MOAGEM
Após separados os diferentes tipos de plásticos, estes são moídos e fragmentados em pequenas partes.
LAVAGEM
Após triturado, o plástico passa por uma etapa de lavagem com água para a retirada dos contaminantes. É necessário que a água de lavagem receba um tratamento para a sua reutilização ou emissão como efluente.
AGLUTINAÇÃO
Além de completar a secagem, o material é compactado, reduzindo-se assim o volume que será enviado à extrusora. O atrito dos fragmentos contra a parede do equipamento rotativo provoca elevação da temperatura, levando à formação de uma massa plástica. O aglutinador também é utilizado para incorporação de aditivos - como cargas, pigmentos e lubrificantes.
EXTRUSÃO
A extrusora funde e torna a massa plástica homogênea. Na saída da extrusora, encontra-se o cabeçote, do qual sai um "espaguete" contínuo, que é resfriado com água. Em seguida, o "espaguete" é picotado em um granulador e transformado em pellet (grãos plásticos). Relação entre o tempo de decomposição entre papel e o plástico

Fonte: www.pzmreciclagem.com.br

Composição
O plástico vem das resinas derivadas do petróleo e pertence ao grupo dos polímeros (moléculas muito grandes, com características especiais e variadas). A palavra plástico tem origem grega e significa aquilo que pode ser moldado. Além disso, uma importante característica do plástico é manter a sua forma após a moldagem.

Fonte: www.recicloteca.org.br

Essa verdadeira revolução – a criação de novas matérias-primas – filha tão legítima da Revolução Tecnológica, não detonou tão revolucionariamente como se poderia supor. Ao contrário, principiou timidamente e caminhou passo a passo, às vezes retrocedendo, até o instante em que, de fato, pôde eclodir e, aí, sim, adquiriu caráter revolucionário.

Até meados do século XIX, existia uma separação intransponível entre a natureza orgânica e a inorgânica. As leis gerais da energia e, até certo ponto, o princípio da evolução de Darwin, começaram a unificar ambos os reinos aos olhos dos estudiosos. Em 1828, Friedrich Woehler, eminente mestre de Gotingue, conseguiu efetivamente, dispensando rins de animais, obter uréia, partindo de matéria inorgânicas. Tal descoberta, pelo menos em teoria, pôs por terra, definitivamente, o divórcio até então existente entre os corpos vivos e os minerais.

Mas as comunicações não eram fáceis como as de hoje, não reinava ainda uma mentalidade científica imune aos preconceitos e, principalmente, não existiam laboratórios de pesquisa, nem o instrumental adequado, nem métodos, nem muito menos uma visão bastante lúcida dos fenômenos químicos e físicos. O que existia era alguma pesquisa nas universidades (Alemanha, França e Inglaterra), mas muitas descobertas se perderam, ou não foram entendidas, ou então demoraram a vir a público, permanecendo como simples curiosidade.
Para que serve isto, afinal?
Um exemplo. Quando, segundo o Livro do Êxodo, Moisés tirou os judeus do Egito e levou-os para o deserto, faltou alimento. Mas, certa manhã, apareceu sobre as plantas e o solo algo parecido ao orvalho e que se podia colher e comer antes que o sol o derretesse. Era o “maná” – “o pão que o senhor vos deu para comer” – na explicação de Moisés ao seu povo.

Que coisa era esse maná tão mencionado na tradição mediterrânea, onde há traços vivos da passagem do árabe? – quis saber, em 1806, o químico francês Joseph Louis Proust, então a serviço do rei Carlos IV da Espanha. Pesquisou e descobriu que 60% do maná, uma goma natural, um composto, consistem em álcool (manitol), branco e cristalino, levemente adocicado ao paladar e solúvel na água.

O maná ainda hoje continua a ser colhido nos desertos da Arábia e, sintetizado, figura em xaropes e laxativos. Mas, naquele distante 1806, serviu apenas para dar maior renome a Proust, sem nenhuma conseqüência para a economia espanhola nem para a ciência em geral. Dois séculos antes, Proust teria pago essa heresia com a morte numa fogueira da Inquisição.

Dadas essas condições é que se registram tantos “achados” casuais. O pesquisador, procurando um resultado, dava com outro, às vezes de maior valor, e desistia. Só a pesquisa sistemática, levada a cabo por cérebros privilegiados ou temperamentos muito teimosos é que permitiu, com o tempo, já na última década do século IXX e na primeira do século XX, abrir caminho para a comunhão da física, da química e da matemática, cujas fronteiras entre si já não são bastante definidas, e que juntas formam o fundamento de todas as outras ciências naturais.

Foi, por exemplo, o que aconteceu com o precoce alemãozinho Adolf von Baeyer que, aos 13 anos de idade, em 1848, realizando uma tarefa a pedido do seu mestre de química em Heidelbergue, apanhou uma mancheia de anil natural e, muito simplesmente, separou dele o seu ingrediente corante ativo, a indigotina. Nem por isso mereceu elogios. Só 22 anos mais tarde, Baeyer, superando-se, realizou uma síntese do complexo pó azul, extraindo-o do alcatrão. Mas foi preciso esperar até 1897 para que a sua síntese do índigo entrasse na luta dos corantes travada entre a Alemanha e a Inglaterra.

Friedrich Woehler e m ais alguns poucos homens foram fundamentais para chegarmos à compreensão dos fenômenos físico-qímicos. Um deles é outro alemão, Emil Fischer, que viveu entre 1852 e 1919. Ocupou a cadeira de química em várias universidades de sua pátria e, em Berlim, já no fim do século, como diretor do Instituto de Química, criou uma famosa escola de pesquisadores. Fischer é um dos maiores nomes da química orgânica sintética, pois não apenas formou toda uma geração de pesquisadores, como ainda realizou importantes trabalhos sobre corantes e compostos do grupo uréico, dedicando-se também à síntese de açúcares, proteínas, ácidos, matérias tanantes, graxas e fermentos. Foi um dos pioneiros da química dos ésteres. Prêmio Nobel de Química em 1902. Observe-se que o Nobel foi criado em 1901 e já na segunda vez em que foi atribuído, distinguiu um dos pioneiros do plástico.

O grande químico francês Marcellin Berthelot, professor do Colégio de França e que chegou a senador, ministro da Instrução Pública e do Exterior, consagrou boa parte da sua vida, nos últimos trinta anos do século IXX, a pesquisas de química orgânica, detendo-se particularmente no estudo dos ésteres e da reprodução, em laboratório, dos compostos químicos existentes nos seres vivos. Berthelot realizou grande número de sínteses, como as do álcool, metano e acetileno, e inventou vários aparelhos, um dos quais, o calorímetro de precisão, foi na sua espécie um dos primeiros a figurar no instrumental da nova tecnologia que surgia. Berthelot veio por isso a ser chamado o pai da termo-química – a parte da química que considera o calor o fator integrante das reações. Mas ainda se estava em pleno reino do empirismo. Já se produzira um material sintético, o celulóide, não se sabendo, porém, exatamente, do que e como ele se formara. Somente mais tarde, com os misteriosos raios X é que se sairia da atmosfera do mistério para a compreensão do fenômeno.

CRONOLOGIA SUCINTA SOBRE AS DESCOBERTAS DE MATERIAIS PLÁSTICOS:
Reaumur, físico e naturalista francês, que viveu entre l683 e 1757, criador de um termômetro que leva o seu nome e autor de uma monografia sobre “a arte de converter o ferro fundido em aço” previu com bastante antecedência que uma dia se fariam, nos laboratórios, sínteses dos materiais encontrados na natureza. E assim foi, realmente.

Por volta de 1840, Keller, modesto produtor de linho caseiro em Hainichen, na Saxônia, e seu amigo Heinrich Volker, igualmente humilde fabricante de papel cuja matéria-prima eram os trapos recolhidos nas redondezas, partiram de caroços de cereja reduzidos a pó e criaram o papel de polpa de madeira. Era, na realidade, a primeira realização química, prática e com aproveitamento em larga escala da celulose, atrás da qual viriam os mais potentes explosivos, os filmes fotográficos, o “rayon”, os plásticos sintéticos, as lacas e os vernizes.

A celulose é o material de que são formadas as paredes das células de todos os vegetais. É insolúvel na água, no álcool, no éter e em todos os solventes habituais de laboratório, mas se dissolve no ácido sulfúrico , numa solução amoniacal de óxido de cobre, e depois de tratada com soda cáustica, no bissulfeto de carbono. Quimicamente é um hidrato de carbono, parente do açúcar e do amido e reagindo como um álcool. Em forma quase pura, é extraída das fibras do algodão, mas qualquer vegetal a contém: folhas de capim, cascas de árvores, bagaço de cana. Estruturalmente, a celulose é uma dessas moléculas encadeadas e polimerizadas, como a borracha natural.

A década de 1840-50 foi rica de importantes descobertas sobre a celulose. John Mercer, estampador de Blackburn, na Inglaterra, mergulhando panos de algodão num banho de soda cáustica, criou o algodão mercerizado, mais suave ao tacto e mais fácil de tingir. Assim, o algodão mercerizado foi a primeira das numerosas fibras têxteis naturais modificadas pelo homem.

Em 1846, o químico Christian Schönbein, professor na Universidade de Basiléia, tratou o algodão com ácido nítrico e produziu a nitrocelulose, ou o chamado algodão-pólvora. Tal descoberta, porém, ou se perdeu ou não foi devidamente patenteada, e sua autoria é geralmente atribuída ao inglês Alexander Parker, em 1861.

Naquele mesmo ano de 1846, o pintor Louis Nicolas Ménard, desejando obter uma substância para revestir suas telas paisagísticas de Brabizon, dissolveu o algodão-pólvora numa mistura de álcool e éter obtendo uma película de celulose lisa, dura e límpida. Tinha descoberto o colódio , básico para as lacas e vernizes e hoje tão largamente usado.
O Celulóide
As primeira notícias que se tem a respeito da criação do celulóide, que só parcialmente é um material sintético, nos vêm da França, de estudos levados a cabo por H. Braconnete, em 1833. Registram-se também as experiências de Schönbein, na Alemanha em 1845. Mas quem patenteou o novo artigo, em 1865, resguardando os solventes e plastificantes da chamada nitrocelulose, foi um impressor de Albany, Nova York, de nome John Wesley Hyatt, que com sua descoberta ganhou a medalha “Perkin”, conferida pela “British Society of Chemical Industry”.

Hyatt e seu irmão Isaías obtiveram o celulóide produzindo um caldo de duas partes de nitrato de celulose e uma parte de cânfora, gelatinizando depois a mistura sob pressão, na presença de solventes. Dizem os pesquisadores, comentando tal descoberta, não compreender com Hyatt e o irmão sobreviveram às experiências a que submeteram a nitrocelulose. Alexander Parker, Daniel Spill e outros, mais conscientes da explosividade da mistura, não se atreveram a fazê-lo. Daí Hyatt, que não era um químico, vir a tornar-se o pai da celulóide – um sintético mestiçado, digamos assim – e também o pioneiro da sua industrialização em larga escala.

Por que o fizera? Para ganhar um prêmio então instituído nos Estados Unidos, de 10 mil dólares, para quem inventasse uma substância capaz de substituir o marfim dos elefantes para bolas de bilhar. Hyatt não ganhou o prêmio, mas ganhou muito mais com a produção do celulóide – o arauto da Era Plástica.
A Caseína
Já em 1871, o ilustre químico Adolf von Baeyer, famoso pela síntese do anil, investigara as reações de diferentes fenóis e aldeídos, membros de dois grupos que contêm os nossos conhecidos desinfetantes, mas as abandonara, pois formavam substâncias alcatroadas que endureciam em massas resinosas insolúveis. Em torno de 1890, o Dr. Adolf Spitteler, de Hamburgo, vertendo aldeído fórmico na coalhada do leite, obteve um “quadro negro” de cor branca que lhe fora encomendado. Era o primeiro plástico derivado da caseína, que logo teve imediato aproveitamento na indústria de botões.
Enfim, o verdadeiro plástico
As resinas fenólicas – ou fenoplásticos – constituem a primeira família, na genealogia das resinas sintéticas. Por volta de 1870, Leo Hendrik Baekeland, químico e físico belga laureado em quatro universidades de seu país, que chegou aos Estados Unidos no começo do nosso século, criou um papel fotográfico chamado “Velox”, sensível à luz artificial, e cujos direitos vendeu, por um milhão de dólares, a George Eastman, criador da Kodak.

Ora, além de cientista, Baekeland, como vimos, tinha muito tino comercial. Leu e releu tudo quanto havia sobre fenóis e aldeídos. Estava convencido de que o caminho para se descobrir uma goma-laca sintética, com possibilidades comerciais, era a reação do fenol e do aldeído fórmico, ambos abundantes e baratos. Repetiu todas as experiências já conhecidas, com os mesmos resultados desastrosos, formando substâncias alcotroadas, sujas e intratáveis, resistentes a todos os solúveis. Baekeland sabia que todo o segredo se resumia em interromper no instante exato a polimerização (processo pelo qual as pequenas moléculas se engancham como “clips” umas nas outras para formar uma molécula gigante, como já explicamos). Tentou todos os solventes possíveis, juntou à miscela ácidos e álcalis, mas ora obtinha um produto pétreo, ora uma massa esponjosa...

Um dia, deu-lhe um “estalo”. Bem, se o fenol e o aldeído fórmico geravam uma substância tão rija, por que não pesquisar essa virtude, que lhe vinha parecendo um defeito? Deixou de pensar na goma-laca e pôs-se a pesquisar uma resina que pudesse ser fundida e modelada, que fosse imutável no contorno e na substância, enfim, um material que pudesse substituir o marfim dos elefantes nas bolas de bilhar!

Agora, ao invés de empregar meios de retardar a polimerização, Baekeland buscou como apressá-la. Lançou mão do calor. Numa autoclave, a 200 graus C, obteve, afinal, uma massa esférica, cor de âmbar, cuja superfície já era uma impressão exata, em negativo, do fundo da autoclave, inclusive as junturas e as cabeças dos parafusos. Estava criada a baquelite – oriunda do seu nome – que, posteriormente, bastante aperfeiçoada, deu origem a objetos dos mais diversos, inclusive as sonhadas bolas de bilhar. A baquelite foi o primeiro plástico real e inteiramente sintético.
A família começa a crecer
Como todas as famílias prolíficas, a dos plásticos não tardou a crescer. Façamos, embora por alto, a biografia de alguns dos seus descendentes. O acrílico pertence ao grupo das resinas chamadas metacrílicas, cujos polímeros derivam do ácido acrílico. É um material termoplástico. A sua descoberta, os primeiros estudos teóricos, aplicações e primeiras realizações no campo industrial estão ligados ao nome do Dr. Otto Roehm, cuja tese de doutoramento, na Universidade de Tubingem, em 1901, já teve por tema o acrílico. Somente em 1930, entretanto, o acrílico começou a ser industrializado na Inglaterra e na Alemanha.

Arthur D. Little, que não era um especialista, mas um erudito e um homem rico, em 1893, nos Estados Unidos, já fabricava folhas de acetato de celulose. Mais tarde, associando-se a William H. Walker, grande mestre de química industrial, produziu uma película de acetato não inflamável, cuja patente foi vendida a George Eastman.

Em 1910, igualmente, os irmãos Camille e Henry Dreyfus, trabalhando com acetato de celulose de baixa inflamabilidade, já forneciam filmes à Pathé Fréres, uma da pioneiras do cinema.

Nesta mesma época, o químico suíço Jacques Edwin Brandenberger criava o celofane, que só muitos decênios mais tarde viria a ter larga utilização como material de embalagem.

O poliestireno aparece na literatura científica por volta de 1839, quando o professor P. L. Simon, da Academia Berlinense de Arquitetura, o obteve casualmente por polimerização espontânea do estireno exposto à luz solar. Por quase um século, não passou o poliestireno de um exercício acadêmico. Não se sabia sequer interpretar a sua síntese, e somente em 1845 os químicos Blyche e Hoffman lograram explicar o processo de polimerização que dava como resultado aquele material.

Finalmente, em 1869, Marcellin Berthelot produziu o estireno monômero partindo do etilbenzeno. Antes disso, o estireno era obtido do estoraque, uma resina odorífera vegetal vinda da Ásia Menor. Dufraisse e Mureau, em 1922, descobriram os agentes inibidores da polimerização, indispensáveis para a conservação do monômero em estado líquido. Entre 1900 e 1911, o poliestireno já era indicado para substituir objetos então fabricados com celulóide, madeira ou ebanite. A sua verdadeira fase industrial, porém, só se iniciou em 1935, quando alemães e americanos passaram a produzi-lo em larga escala.

O cloreto de polivinillo, ou PVC, se obtém através da polimerização do cloreto de vinilo. Este monômero foi sintetizado pela primeira vez em 1835, pelo químico francês Regnault, que não lhe deu importância. Foi o químico Baumann, em 1872, quem pôs em destaque a tendência do cloreto de vinilo a polimerizar-se sob a ação da luz solar, transformando-se num termoplástico. Estas descobertas, porém, não levaram o PVC a ser industrializado.

Na fábrica de Griesheim, ligada a Hoechst, na Alemanha, Fritz Klatte, retornando as experiência de Baeyer e outros, expôs garrafões de éster vinílico líquido à luz solar e obteve uma polimerização natural: uma massa sintética, patenteada em 1913 como “Mowilit”. Submetida a solventes e a evaporações, servia esse material para esmaltes, filmes, fios, etc. Era o acetato de polivinilo, PVA, que viria mais tarde a encontrar tantas aplicações no mundo moderno. Foi o mesmo químico quem descobriu, pela mesma época, a síntese do cloreto de vinilo, partindo do ácido clorídrico gasoso e do acetileno em presença de cloretos metálicos como catalisadores. A produção, em escala industrial, de ambos os materiais só começou em 1933.

Os ingleses E. W. Fawcett e R. Gibson foram os primeiros a descobrir traços de polietileno sob a forma de um pó branco. A ICI (Imperial Chemical Industries) o patenteou em 1937. Tratava-se de polietileno de baixa densidade. O de alta densidade foi criado pelo Prof. Ziegler, trabalhando para a Philips Petroleum, patente de 1954.

O policarbonato da família dos poliésteres, tem por pai o Dr. Hermann Schnell, da Bayer alemã. Por ésteres, conhecem-se em química, os produtos de reação dos álcoois e ácidos. São muito freqüentes. As gorduras assimiladas pelo nosso organismo figuram entre os ésteres, isto é, os ésteres da glicerina.

O precursor do policarbonato foi o químico austríaco Alfred Einhorn que, num trabalho puramente acadêmico, fez uma comunicação científica a respeito em 1898. Em 1902, nova comunicação, agora dos químicos Bischoff e Von Hedenstrom. Carothers, de quem falaremos adiante, pouco mais tarde também estudou a matéria. Partiu, em suas experiências, das resinas poliésteres, mas caiu num campo imprevisto, o das poliamidas. O policarbonato passou a ser industrializado em 1956. O polipropileno, termoplástico que parte do propileno polimerizado, é um dos sintéticos mais recentes. É o primeiro produzido industrialmente no mundo mediante o chamado processo de polimerização estereoespecífica., descoberto e realizado na Politécnica de Milão pelo Professor Giulio Natta que, com Karl Ziegler, químico de Mülheim, mereceu o Prêmio Nobel de Química de 1963. Ambos foram distinguidos por aquela láurea pelas suas descobertas no campo da química e da tecnologia dos polímetros de índice elevado. E se relacionam com métodos fundamentais que permitem edificar macromoléculas orgânicas por polimerização catalítica, a partir de carbonetos simples não saturados.

Muitos outros sintéticos foram em seguida ou ao mesmo tempo criados e comercializados. Pela sua importância, registramos mais este, com as datas em que passaram a ser industrializados em larga escala: melamina, 1935; silicone, 1941; ABS, 1946; epoxy, 1947; poliuretana, 1952; e poliacetal, 1953.
O fio sintético
Um pouco da história do fio sintético.
Em 1850, Charles George, suíço, esteve a ponto de criar a primeira fibra sintética. Um século antes, Cochot e Louis Bon, na França, chegaram a enrolar fios contínuos de “seda de aranha”, realmente extraídos da gosma produzida por esse aracnídeo e, com ele, fabricaram luvas e meias com razoável resistência. Audemars, revendo tal experiência, ferveu a casca interior da amoreira na soda e adicionou-lhe sabão, tratando depois a mistura com cal dissolvida em ácido nítrico, álcool e éter, à qual juntou, finalmente, uma solução de borracha. Assim, obteve um fio ininterrupto, que não se sabe ter chegado ao mercado. Em 1880, quando preparava chapas fotográficas revestidas de colódio, o conde Hilaire de Chardonnet, em Besançon, produziu a primeira fibra sintética que patenteou com esta explicação, em 1884: “...une matière artificielle ressemblant à la soje”. Naquela cidade mesmo instalou sua própria fábrica de têxteis e, na Exposição de Paris de 1889, apresentou a “seda Chardonnet” com enorme êxito.
Afinal, o “Nylon”
Infelizmente, a seda Chardonnet, extraída da nitrocelulose, era facilmente inflamável e levou a resultados desastrosos. Pouco mais tarde, os ingleses Charles F. Cross e Ernest J. Bevan, submetendo a branca e fiável celulose alcalina ao bissulfato de carbono, obtiveram a viscose. Esta mesma viscose sofreu posteriormente novos tratamentos, como, por exemplo, sua transformação em acetato de celulose, e então surgiram no mercado vários tipos de “rayons” sob marcas diferentes.

O criador da fibra inteiramente sintética – liberta da celulose – foi o Dr. Fritz Klatte que, já em 1913, na fábrica de Griesheim, conseguiu produzir em escala industrial o cloreto de vinilo, então só conhecido como preparado de laboratório. No entanto, por essa época, não se sabia como levar o cloreto de vinilo ao estado sólido, de polimerizá-lo de forma racional. Quase nada se sabia sobre substâncias altamente polímeras.

Por volta de 1930, os químicos alemães conseguiram dominar a polimerização industrial e, extraindo a acetona do PVC, produziram uma massa de fiação que, pressionada numa tubeira, solidificava-se em fios e fibras. Chamou-se a essa fibra PC, que possuía muitas vantagens, como as de ser insensível a ácidos, água e agentes de putrefação. Infelizmente, não podia servir para vestidos e costumes: a simples lavagem em água quente e o ferro de passar representavam para ela “perigo de vida”.

A solução final para toda a indústria sintética de fios foi dada por um jovem e brilhante químico norte-americano, Wallace Hume Carothers que, com seu auxiliar John Hill, em 1929, nos laboratórios da Du Pont, criou o “nylon”, material que não contém a menor parcela de celulose. O “nylon” pertence à família dos termoestáveis – as poliamidas – em cuja composição entram, a grosso modo o fenol, ácido nítrico, óleo de rícino e soda cáustica. Era algo absolutamente novo, virgem. Os mais sóbrios cientistas saudaram o “nylon” de Carothers “como a mais importante descoberta química desde o processo de Fritz Haber para extrair nitrogênio do ar”. A fibra começou a ser vendida às fábricas de meias em maio de 1940. Quatro anos antes, nos mesmo laboratórios, Carothers, admirável arquiteto de moléculas, criara um produto muito semelhante à borracha natural, o isopreno. A nova molécula foi o cloropreno, devido ao cloreto que continha, em substituição ao hidrogênio do isopreno. Atribui-se a Carothers, por causa do cloropreno e do “nylon”, a consolidação da técnica de polimerização, isto é, o processo de enganchar uma molécula a outra, soldagem molecular que se produz através de calor e pressão, na presença dos mais diversos catalisadores.
O Plástico no Mundo
Uma das características mais impressionantes da nossa época é o que se pode chamar de convergência entre a ciência e a tecnologia, ou seja, a distância no tempo entre uma descoberta científica e a sua aplicação tem sido cada vez mais reduzida. Dezenas de anos, no início do século XX, medeavam entre uma descoberta e sua utilização prática. Assim, o aproveitamento do plástico, que até a II Guerra Mundial foi lento, acelerou-se vertiginosamente no quarto de século seguinte.

Um exemplo desse desenvolvimento, inicialmente em ritmo vagaroso, pode ser aquilatado através da importância que ganharam no mercado norte-americano algumas das primeiras resinas sintéticas. Um desses materiais, o PVC (“Poly Vinil Chloryde”), ou cloreto de polivinilo, lançado em 1928, demorou 21 anos, até 1949, para chegar a um faturamento de US$100 milhões e mais 15 anos para triplicar esse faturamento (em 1964, US$277 milhões). O estireno, lançado em 1937, demorou apenas 14 anos para quase quadruplicar essa importância (em 1964, US$362 milhões). E, finalmente, para só citar mais um exemplo, o polietileno, lançado em 1941, demorou 13 anos para chegar a US$100 milhões e apenas 10 anos para quase quintuplicar esse nível (em 1964, US$471 milhões).

Embora criado há um século e meio, o plástico somente alcançou desenvolvimento em escala industrial nas últimas três décadas, ou seja, mais acentuadamente no após-guerra, como dissemos.

Deve-se assinalar que, dentre os vários fatores que contribuíram para aquele desenvolvimento, acelerado nestes últimos vinte e cinco anos, figura prioritariamente o aprofundamento da teoria da química macromolecular, novos métodos de pesquisa, análise e ensaio, que permitiram a formulação das tarefas do químico com muito maior precisão, e também o progresso na construção de equipamentos de transformação que, por sua vez, possibilitaram a produção racional de grandes quantidades de produtos uniformes.

Em matéria de equipamentos, a indústria dos plásticos está bastante adiantada, podendo-se até dizer que o chamado obsoletismo neste setor ocorre de ano para ano. Eles existem em número crescente, de várias procedências, altamente sofisticados. Prensas e injetores moldam, em alguns segundos, peças de grandes dimensões, complexas e com muitos quilos de peso. Além do progresso puramente tecnológico, é notável o aperfeiçoamento dos controles eletrônicos e de computadores. As injetoras mais modernas são equipadas com sistema de autoajustagem, seleção e controle de qualidade, orientados por unidades de computadores.


Fonte: www.simplago.org.br

DIA DO INDIO?

Apoie a Rede consuma com nossos afiliados.

DIA DAS BOAS AÇÕES

DIA DAS BOAS AÇÕES
CIEP 115

Proteja os Corais da Amazônia

Proteja os Corais da Amazônia
Greenpeace, eu te apoio!

Adsense

Alimentos Monsanto

Baixe o aplicativo:

Vamos Reciclar? Samantha Lêdo

Filme de Eduard Snowden

Comercio Digital para produtos Sustentáveis

Comercio Digital para produtos Sustentáveis
Sua loja e aplicativo: Promoção!

O EMBURRECIMENTO: ASSISTA AGORA!

CONSUMED COMPLETO:Legendado

Loja Comunique

Modelo de Inclusão Local: representação física Primeira abordagem: Informática

Somos todos contra a PEC 241

Somos todos contra a PEC 241
DIGA NÃO AO SUCATEAMENTO DA SAÚDE E EDUCAÇÃO!

Aplicativo: Vamos Reciclar?

I encontro Eco Social para a sustentabilidade

I encontro Eco Social para  a sustentabilidade
Espaço Ambiental NAVE

I encontro Eco Social para a sustentabilidade

I encontro Eco Social para  a sustentabilidade
Espaço Ambiental NAVE - ECO CAMPING

I encontro Eco Social para a sustentabilidade

I encontro Eco Social para  a sustentabilidade
Espaço Ambiental NAVE - Vista Panorâmicado espaço NAVE

I encontro Eco Social para a sustentabilidade

I encontro Eco Social para  a sustentabilidade
Espaço Ambiental NAVE - Os alquimistas estão chegando!!

I encontro Eco Social para a sustentabilidade

I encontro Eco Social para  a sustentabilidade
Espaço Ambiental NAVE

I encontro Eco Social para a sustentabilidade

I encontro Eco Social para  a sustentabilidade
Espaço Ambiental NAVE

I encontro Eco Social para a sustentabilidade

I encontro Eco Social para  a sustentabilidade
Espaço Ambiental NAVE

I encontro Eco Social para a sustentabilidade

I encontro Eco Social para  a sustentabilidade
Espaço Ambiental NAVE - Oficinas

Brechó da Filó = ESPAÇO NAVE

ECOLOGIA RURAL COM CONEXÃO URBANA

ECOLOGIA RURAL COM  CONEXÃO URBANA
Lumiar/Friburgo - Estrada da Toca da Onça/Sítio da Jabuticaba

Todo o espaço NAVE será ornamentado, reaproveitado , reciclado, restaurado,,,,

Todo o espaço NAVE será ornamentado, reaproveitado , reciclado, restaurado,,,,
NAVE: Núcleo Ambiental de Vivência ecológica

Vamos plantar? multiplicar? vem pro NAVE

NAVE...

NAVE...
Educação Ambiental, Coleta Seletiva de Materiais, Reaproveitamento Artesanal (Oficinas de Arte em Reciclagem), Reciclagem, Compostagem Orgânica, Horta Familiar Orgânica, “Restaurante Caseiro Personalizado Temperança, Empório (produtos locais), Brechó alternativo (trocas), Camping, Sustentável, Pouso Familiar Ecológico, Vivências Ecológicas!

NAVE

NAVE

NAVE: Núcleo Ambiental de Vivência Ecológica

NAVE: Núcleo Ambiental de Vivência Ecológica, venha para NAVE...

NAVE: Núcleo Ambiental de Vivência Ecológica, venha para NAVE...
Você gosta de pássaros? Então plante árvores, e convide-os para ceiar com você, assista de longe, e respire o ar puro e ouça o canto dos nossos pássaros...

Matéria revista VISÃO SOCIAL 2008

Matéria revista VISÃO SOCIAL 2008
Há muitos anos atuando efetivamente na mesma direção...sustentabilidade....

NAVE: BANDEIRA DA CRUZADA DA ECOLOGIA...

NAVE: BANDEIRA DA CRUZADA DA ECOLOGIA...
A luta é grande...

Reciclar é simples assim...

Reciclar é simples assim...

NÓS RECICLAMOS, E VOCÊ?

NÓS RECICLAMOS, E VOCÊ?

Selo da Oficina de Reaproveitamento

Selo da Oficina de Reaproveitamento
Gestão: Samantha Lêdo

Auditorias

Auditorias
Qualidade é: Executar corretamente mesmo que, não seja observado...

A Educação é apenas o começo de um ciclo produtivo limpo E SUSTENTA´VEL.

A Educação é  apenas o começo de um ciclo produtivo limpo E SUSTENTA´VEL.
Educação para a cidadania do descarte adequado!

RAIZ DO PROBLEMA...

RAIZ DO PROBLEMA...
A FALTA DE EDUCAÇÃO AMBIENTAL...

RESUMO DA ATA DO ATO PÚBLICO DO DIA MUNDIAL DO MEIO AMBIENTE 2012

ATA do ato público: DIA MUNDIAL DO MEIO AMBIENTE 05 DE JUNHO DE 2012

COLABORADORES:

GT RIO, CÚPULA DOS POVOS, INSTITUTO MAIS DEMOCRACIA, SINDPETRO R.J, SEPE R.J, MTD, MAB, CAMPANHA CONTRA OS AGROTÓXICOS, LEVANTE POPULAR DA JUVENTUDE, MST, MST-R.J, COMITÊ POPULAR DA COPA E OLIMPÍADAS, GRUPO AMBIENTALISTA DA BAHIA, SINDICATO NACIONAL DOS AEROVIÁRIOS, REDE BRASILEIRA DE JUSTIÇA AMBIENTAL, PACS, REDE JUBILEU SUL BRASIL, FÓRUM DE SAÚDE DO RIO, FRENTE CONTRA A PRIVATIZAÇÃO DA SAÚDE, VIA CAMPESINA, APEDEMA-REGIONAL BAIXADA, RIO MENOS 20, MNLM, AMP VILA AUTÓDROMO, CONSULTA POPULAR, ABEEF, DACM/ UNIRIO, REDE DE GRUPOS DE AGROECOLOGIA DO BRASIL, REGA, PLANETA ECO, SAMANTHA LÊDO E FAFERJ.

Gilvenick: discussão que a ONU em diversas convenções, citando a de Estocolmo, e nada de concreto, ele declara que, o cumpra-se não está sendo cumprido na legislação ambiental e no que diz respeito a participatividade social no fórum.

Sergio Ricardo: Um dos principais objetivos é, dar voz e fortalecer as populações e trabalhadores impactados com a má gestão empresarial acobertada por autoridades competentes, lagoa de marapendí,...ele fala sobre o processo de despejo nas lagoas, SOBRE AS EMPREITEIRAS, ELE FALA TAMBÉM SOBRE AS AMEAÇAS AO Mangue De Pedra, pois só existem 3 no Planeta, e que há um a história sobre a áfrica que abrange aspectos geológicos, antropológicos e arqueológicos para a localidade, precisa se pensar no modelo de ocupação dos solos, Sergio declara sobre os documentos enviados ao ministério público hoje e sempre, ele fala das irregularidades nos licenciamentos ambientais,”fast food”.

Marcelo Freixo: Precisamos de estratégias consistentes e que uma delas importante neste dia de hoje é, de luta e alerta, sobre a ação direta que está sendo encaminhada para o supremo tribunal federal para a cassação de algumas licenças concedidas de forma irregular, contra a TKCSA, contra empresas que não se preocupam com a dignidade humana, e a luta vem a tender os recursos que afetam desde o pescador artesanal até a dona de casa, ele fala do parlamento europeu, sobre os investimentos sociais, sobre isenções fiscais mascaradas de deferimento, uma vez que uma lhes dá o direito de usar o dinheiro público para obras e interesses privados...e que no final sempre os maiores prejudicados são, as populações de risco social gerando um looping social descendente.

Hertz: Hoje nós temos um modelo de desenvolvimento que, privilegia as grandes empresas, as licenças estão sendo realizadas sem os devidos EIAs/RIMAs E SUA CONFORMIZAÇÃO Á LEGISLAÇÃO AMBIENTAL CONFORME: 6.938 – SLAM – 9605 – 9795 e outras...temos que nos unir para exigir mais critérios nos licenciamentos, nós é que temos que tomar conta do Planeta, ele declara que continuaremos discutindo durante todo o movimento.

Vânir Correa: Morador da Leopoldina pergunta o que nós moradores ganharemos com as obras da transcarioca, que tem um traçado que vai da barra da tijuca até a Penha?

Carlos Tautz: Declara que o BNDS, um banco para o desenvolvimento econômico do povo brasileiro, não tem critérios definidos de forma técnica e socioambiental para a liberação de recursos, apesar de declarar o contrário, é um banco que está trabalhando para emprestar aos ricos e multiplicar suas riquezas, que todas as grandes obras no Brasil contaram com recursos de BNDES, e que sempre maqueada em dispositivos legais, burlando a legalidade e que se reparar-mos, são sempre os mesmos conglomerados, mesmos donos, sempre pegando o mesmo dinheiro (DO POVO). Ele convoca a todos a participar da cúpula dos povos, pois na, RIO + 20 NÃO TEREMOS VOZ E NEM DIREITOS, JÁ ESTÁ TUDO FECHADO, MARCADO ECARIMBADO. A CÚPULA DOS PVOS TRATA-SE DO ÚNICO ESPAÇO REAL EM QUE A SOCIEDADE CIVIL ORGANIZADA OU NÃO PODERÁ SE MANIFESTAR, CONTRIBUIR, COLABORAR, APOIAR, CRIAR E IMPLEMENTAR IDÉIAS,,,

CARLOS DO IBAMA DECLARA QUE AS ATIVIDADES ESTARÃO SUSPENSAS ATÉ O DIA 23, UMA POSIÇÃO TOMADA POR ELE E OUTROS COMPANHEIROS DO SETOR, QUE NÃO COMPACTUAM COM O DESCASO E INCOMPETÊNCIA DO ORGÃO EM QUE ATUA.

FUNCIONÁRIO DO SINDICATO DOS SERVIDORES DA FIOCRUZ DECLARAM-SE SLIDÁRIOS E ATIVISTAS NO MOVIMENTO.

GRUPO HOMENS DO MAR DECLARA O DESCASO GERAL COM A BAÍA DE GUANABARA UM CARTÃO POSTAL E PARAÍSO ECOLÓGICO DO RIO DE JANEIRO.

RENATO 5(NÚCLEO DE LUTAS URBANAS): AMLUTA PELA JUSTIÇA SOCIOAMBIENTAL É FUNDAMENTAL NESTE MOMENTO, O PLANETA ESTÁ REPLETO DE INJUSTIÇAS AMBIENTAIS, VIVEMOS NUMA CIDADE NÃO PODE DISSEMINAR A SEGREGAÇÃO. ELE FALA QUE A INJUSTIÇA É VALIDADA DESDE A, DIVISÃO ESPACIAL DO SOLO, OS ESPAÇOS SOCIAIS E QUE SOMOS UMA CIDADE QUE NÃO PODE COMPACTUAR COM OS DISCURSOS HIPÓCRITAS DA RIO + 20.

ALEXANDRE PESSOA (SINDICATO DOS TRABALHADORES DA FIOCRUZ): EM FRENTE AO INSTITUTO DO AMBIENTE, COM A MISSÃO DE GARANTIR ATRAVÉS DO LICENCIAMENTO AMBIENTAL A JUSTIÇA, O QUE NÃO ACONTECE COM ESTE ÓRGÃO. ELE APRESENTA NO AMBIENTE ACADÊMICO AS FFALSAS SOLUÇÕES DE ECONOMIA VERDE, SÃO INÚMEROS OS, DESCASOS NA ÁREA DA SAÚDE DEVIDO A MÁ GESTÃO AMBIENTAL DE, NOSSA CIDADE, DE NOSSO BRASIL DESDE, BELO MONTE AOS AGROTÓXICOS, DESTA FORMA NÃO HAVERÁ HOSPITAIS QUE POSSAM ATENDER SE A POLUIÇÃO E A FALTA DE COMPROMETIMENTO CONTINUAREM DESTA FORMA QUE ESTÁ. O POVO NÃO QUER PAGAR UMA CONTA NA QUAL NÃO NOS CONSULTAM PARA FAZÊ-LA. HOJE, MESMO COM TANTOS DESCASOS DE GOVERNOS PASSADOS COM A QUESTÃO AM IENTAL, UNICA FOI TÃO FÁCIL CONSEGUIR UM LICENCIAMENTO AM BIENTAL. ACORDA BRASIL!!!

HELENA DE BÚZIOS CLAMA PELA PRESERVAÇÃO DO MANGUE DE PEDRA E O REFERIDO PROJETO LOCAL.

PAULO NASCIMENTO: DECLARA QUE É CONTRA QUALQUER GOVERNO DO SERGIO CABRAL, POIS HOJE OS MILITARES SÃO ESCURRAÇADOS DENTRO DOS QUARTÉIS, E QUE PASSAMOS POR UMA DITADURA LIVRE, DISFARÇADA, ELE DECLARA TAMBÉM QUE O ESTADO NÃO LHES FORNECE UNIFORME, OU SEJA, ELES UTILIZAM O MESMO UNIFORME MESMO NA TROCA DE TURMA, OU SEJA, 24/24 E A FILA ANDA,,,,SÃO VÍTIMAS DE DIVERSAS DOENÇAS DE PELE, COMPROVADAMENTE, E QUE OS QUE SE MANIFESTAM SÃO EXCLUÍDOS.Peço desculpas aos companheiros por alguma falha de interpretação e ou nomenclaturas, ficarei grata com as correções e críticas.

Cartão Postal Ecológico - Ilha Grande

Cartão Postal Ecológico - Ilha Grande
Clieke aqui e acesse a página.

Click Talentos Ambientais

Click Talentos Ambientais
Rogèrio Peccioli - Macaé/R.J-Brasil

ONG Beija Flor

ONG Beija Flor
Amor, às crianças, à natureza, à vida!!

CONHEÇA MAIS AS LEIS E NORMAS AMBIENTAIS

LEIS:
6938 de 31/08/81 - Política Nacional do Meio Ambiente
7804 de 18/07/89 - Lei alteração da lei 6938
10.165 de 27/12/00 - Lei dispõe sobre a taxa de fiscalização ambiental.
7679 de 23/11/88 - Pesca predatória
9605 de 12/02/98 - Crimes Ambientais
Art. 29 - CONTRA A CAÇA A ANIMAIS
4191 de 30/09/2003 - Política Estadual de resíduos Sólidos
4074 de 04/01/2002 - Regulamenta a produção de Embalagens, rotulagem.
3239 de 02/08/99 - Política Estadual de Recursos Hídricos.
11.445 de 05/01/07 - Lei de Saneamento Básico
9433 de 08/01/97 - Política Nacional de Recursos Hídricos
9985 de 18/07/2000 - Unidades de Conservação
1898 DE 26/11/91 - Lei de Auditoria Ambiental Anual
5438 de 17/04/09 -Institui o Cadastro Técnico Estadual
9795 de 27/04/99 - Políca Nacional de Educação Ambiental
4771 de 15/09/65 - Manguezais
10.257/01 direto - Estatuto das Cidades
6.766 de 19/12/79 - Parcelamento do Solo Urbano
4132 de 10/09/62 - Desapropriação
7735 art. 2º - Determina a autarquia no IBAMA
___________________________________________ INEA
5101 DZ 0041 R 13 EIA/RIMA
DZ - 056 - R2 Diretriz para a realização de Auditorias Ambientais.
DZ 215 Grau de Classificação de carga orgânica

____________________________________________ 42.159/09 - Licenciamento Ambiental Simplificado - Classe 2 Tab. 01
__________________________________________ CONAMA
313/2002 - Resíduos Industriais
008/84 - Reservas Ecológicas
237 - Utilização dos Recursos Naturais
__________________________________________ SASMAQ 202005 - Reduzir os riscos de acidentes nas operações de transporte de distribuição de produtos químicos
9001 - Gestão da Qualidade
14001 - Gestão Meio Ambiente
10004 - gestão de Resíduos
_______________________________________
SLAM - (sistema de Licenciamento ambiental)
SLAP - (Sistema de Licenciamento de Atividades Poluidoras)
PEGIRs - Plano Diretor de gestão Integrada de Resíduos Sólidos
__________________________________________

PENSE SUSTENTÁVEL...

REDUZA, REAPROVEITE, RECICLE!!!

Projeto O meu rio que se foi...

Projeto O meu rio que se foi...
Samantha ledo - Escola Engenho da Praia - Lagomar - Macaé...

Adquira as camisetas do projeto Comunidade Sustentável

Adquira as camisetas do projeto Comunidade Sustentável
Recicle! Apoie! clique na foto e adquira a sua já!

Educação e Coleta Seletiva

Educação e Coleta Seletiva
ONG Beija Flor

Visita de Samantha Lêdo e Professor Feijó ao Galpão das Artes Urbanas/R.J

Visita de Samantha Lêdo e Professor Feijó ao Galpão das Artes Urbanas/R.J
Samantha Lêdo, Professor Feijó, Alfredo Borret e Ana Cristina Damasceno

RESPONSABILIDADE SOCIOAMBIENTAL

RESPONSABILIDADE SOCIOAMBIENTAL
EMPRESAS

EDUCAÇÃO PARA A INCLUSÃO!!

EDUCAÇÃO PARA A INCLUSÃO!!
CATADORES CONHECEDORES TÉCNICOS DA MATÉRIA PRIMA.

CAMISETA RECICLE

CAMISETA RECICLE
FAÇA PARTE DA COMUNIDADE SUSTENTÁVEL

luminária produzida a partir da caixa de amortecedores para veículos.

luminária produzida a partir da caixa de amortecedores para veículos.
EMBALAGEM DE PAPELÃO - ARTES PLÁSTICAS PARA TRANSFORMAÇÃO DA MATÉRIA PRIMA

ATO PÚBLICO - CÚPULA DOS POVOS

ATO PÚBLICO - CÚPULA DOS POVOS
05 DE JUNHO DE 2012, DIA MUNDIAL DO MEIO AMBIENTE, VÉSPERAS DA RIO + 20 - MANIFESTAÇÃO CONTRA O FORMATO DO EVENTO EM NOSSO PAÍS,

Oficina de Arte em Reciclagem - Planeta Eco Arte

Oficina de Arte em Reciclagem - Planeta Eco Arte
Evento de Responsabilidade Socioambiental: Escola Engenho da Praia.

Reaproveitamento papelão, pet, vidros, madeira, e outros...

Reaproveitamento papelão, pet, vidros, madeira, e outros...
REAPROVEITAMENTO E RECUPERAÇÃO...2º e 4º Rs

Revenda Samantha Lêdo

Revenda Samantha Lêdo
Produtos Naturais e Ecológicos Ama Terra

Arte de reaproveitar...

Arte de reaproveitar...
Reaproveitamento de papelão

Enquanto os "Legumes e Verduras" são, a "fonte da saúde, da beleza e da sonhada qualidade de vida!!"

0 galinhas
0 perus
0 patos
0 porcos
0 bois e vacas
0 ovelhas
0 coelhos
0

Número de animais mortos no mundo pela indústria da carne, leite e ovos, desde que você abriu esta página. Esse contador não inclui animais marinhos, porque esses números são imensuráveis.

Não desista nunca!

Não desista nunca!
Siga em frente, força!

Grupo Comunique Sutentável

Grupo Comunique Sutentável
Pratique essa idéia!

Horta Orgânica

Horta Orgânica
Mais fácil e simples do que imaginamos...

RECICLAGEM DE RETALHOS - Homenagem aos petroleiros da Bacia de Campos.

RECICLAGEM DE RETALHOS - Homenagem aos petroleiros da Bacia de Campos.
Sentinela! Não pode relaxar ...Arte, Criação, Curadoria: Samantha Lêdo - Planeta Eco Arte

Vamos reciclar?

Vamos reciclar?
NAVE: Núcleo Ambiental de Vivência Ecológica

Peixe de Garrafa PET

Peixe de Garrafa PET
Educação e Ecologia com Arte

EM que posso lhe ajudar?

Nome

E-mail *

Mensagem *

Lojinha e Oficina: Planeta Eco Arte

Lojinha  e Oficina: Planeta Eco Arte
Papel reciclado: Samantha Lêdo e a ONG PORTADORES DA ALEGRIA/Macaé..

Utensílios a partir da Arte Reciclada!

Utensílios a partir da Arte Reciclada!
Reduza, reaproveite, recicle...

Vamos Reciclar? Posso ajudar, cadastre-se...

Revista Samantha Lêdo

I encontro Eco Social para a sustentabilidade

I encontro Eco Social para  a sustentabilidade
Integrando todas as tribos - chorinho e um cardápio diversificado para todos os hábitos alimentares - integrar para conhecer -considerando que a mudança deve ser de livre arbítrio!

Confie e busque os seus ideais, estude!

Confie e busque os seus ideais, estude!
Só o conhecimento poderá te levar onde o seu sonho quer!

Faça parte do Clube Eco Social

Faça parte do Clube Eco Social
Grupo Comunique Sustentável

APlicativo Vamos Reciclar no Twiter:

Natureza!

a "Natureza" nos ensina a "Reciclar", a "Reciclagem" nos ensina a "Produzir", as duas coisas nos ensina a "Consumir"!
(Samantha Lêdo)
Bem vindo(a) ao meu blog e Saudações Ecológicas da
eco amiga Sam

CONTATO

+55(0)21-2753-8061

Japão declara crise Nuclear

A Inovação da Solidão: Excelente!

Salve os oceanos!

Vamos Reciclar?

Conheça o nosso aplicativo e cadastre-se:

Programa de agroecologia: André Cajarana

Programa de agroecologia: André Cajarana
Boas iniciativas ja ocorrem no alto sertão sergipano.

Nossos parceiros!

Calcule a sua pegada ecológica

Calcule a sua pegada ecológica
Revista Samantha Lêdo

Aquífero Guarany

ASSINE A PETIÇÃO

ASSINE A PETIÇÃO

 O que o mau uso do plástico pode gerar


Embora quase todos os plásticos utilizados para as embalagens sejam mecanicamente recicláveis, é comum a banalização de seu uso e descarte inadequado. Esse descarte, gera enormes impactos ambientais, desde o acumulo  em locais indevidos nas cidades à contaminação de rios e mares.

       

SANEAMENTO JÁ

SANEAMENTO JÁ

Lixo Eletrônico na China!

A SERVIDÃO MODERNA : EDITADO

Pegada Ecológica

Mas tudo começa no individual. O que você comeu hoje? Tem feito muitas compras? Todas necessárias? Como andam suas viagens? Quando trocou seu celular pela última vez? Tudo faz parte da sua Pegada. Conheça-a com mais detalhes e engaje-se numa nova corrente, baseada em valores que permitam o desfrute do melhor que o planeta nos oferece com responsabilidade. Nós do Grup Comunique Sustentável juntamente com Samantha Lêdo apoiamos essa causa!

Calcule já a sua!

Calcule já a sua!
Pegada Ecológica, eu apoio!

Taxa de crescimento da produção industrial do plástico.

Taxa de crescimento da produção industrial do plástico.

Morrendo por não saber...

I encontro Eco Social para a sustentabilidade

I encontro Eco Social para  a sustentabilidade
Espaço Ambiental NAVE -

Evento a Praça é Nossa!

Evento a Praça é Nossa!

Exposição Reciclos

Faça parte dessa Trupe...

Faça parte dessa Trupe...
Trupe da Sustentabilidade

Parceiros na responsabilidade socioabiental

Parceiros  na responsabilidade socioabiental
Criando força para a a sustentabilidade!

Imagem captada em um passeio em São Pedro da Serra!!

Imagem captada em um passeio em São Pedro da Serra!!
Friburgo/R.J

Macaé de Cima - A natureza literalmente em nossas mãos...

Macaé de Cima - A natureza literalmente em nossas mãos...
NAVE - NÚCLEO AMBIENTAL DE VIVÊNCIA ECOLÓGICA: EM BREVE!!

ESTA É A HORA DE AGIR!!!

ESTA É A HORA DE AGIR!!!
A INVIABILIDADE É TOTAL, NÃO HÁ ARGUMENTOS PARA A ENERGIA NUCLEAR

Valores, quais são os seus?

Valores, quais são os seus?

Apoie o Projeto Comunidade Sustentável

Patrocinio

Patrocinio
Financeiro

Atividades Outubro

Atividades Outubro
Trupe da Reciclagem

Para os líderes mundiais e os Ministros da Agricultura:

Pedimos-lhe para proibir imediatamente o uso de pesticidas neonicotinóides. O drástico declínio em colônias de abelhas é susceptível de pôr em perigo toda a nossa cadeia alimentar. Se você tomar medidas urgentes com cautela agora, poderia salvar as abelhas da extinção. Samantha Lêdo apoia a petição, e você?
 
Já Avaaz membro? Digite seu endereço de e-mail e clique em "Enviar".
Nova para a Avaaz? Por favor, preencha os campos abaixo.
Avaaz.org protegerá sua privacidade e mantê-lo informado sobre isso e campanhas semelhantes.

Trupe da Reciclagem

Trupe da Reciclagem
Produção do PUFF

Google

MSOL< Planeta Eco Arte e UNIGRANRIO:Semana do meio Ambiente

MSOL< Planeta Eco Arte e UNIGRANRIO:Semana do meio Ambiente

Goiaba brotando internamente...

Goiaba brotando internamente...
centenas de mudas numa embalagem orgânica....

Parcerias Integradas para a gestão dos seus resíduos.

Parcerias Integradas para a gestão dos seus resíduos.
Faça a sua parte como gerador e faremos a nossa como gestores e recicladores.

Talentos da "Fotografia Ambiental."

Talentos da "Fotografia Ambiental."
Bacurau Chitão - Fotografia: Rogèrio Peccioli

Consórcio para o compartilhamento de responsabilidades...párticipe!!

Consórcio para o compartilhamento de responsabilidades...párticipe!!
Na prática, todo mundo sabe na teoria!!

Luminária papelão - caixa de casquinhas Kibon

Luminária papelão - caixa de casquinhas Kibon
Arte e Criação: Samantha Lêdo

Uso e reuso!! E você?

Uso e reuso!! E você?
Re aproveitamento de àgua...Pense nisto...

Não adquira se, não for madeira legal

Não adquira se, não for madeira legal
Faça parte do Grupo Comunique Sustentável

Apoio

Apoio
Institucional

Classificação de Resíduos Sólidos

Selo de Responsabilidade Socioambiental "Eu Apoio"

Selo de Responsabilidade Socioambiental "Eu Apoio"
Garanta o seu!

Lojinha Socio Ambiental - PLANETA ECO ARTE

Lojinha Socio Ambiental - PLANETA ECO ARTE
Móbile de PET - Buterfly - Samantha Lêdo

Reciclagem de caixotes de Madeira

Reciclagem de caixotes de Madeira

A educação agrega todos na mesma causa...

A educação agrega todos na mesma causa...
Colaboradores e Empresa conscientes.

Fotos ambientais brasileiras

Fotos ambientais brasileiras
Esquilo - Fotografia: Rogério Peccioli - Macaé-R.J/Brasil

EDUCAÇÃO E CONSCIENCIA DA RECICLAGEM

EDUCAÇÃO E CONSCIENCIA DA RECICLAGEM

Palestras para escolas, empresas e condomínios.

Palestras para escolas, empresas e condomínios.
Grupo Comunique Sustentável

Assine pela criação do santuário das baleias

753538 pessoas no mundo inteiro já assinaram, e você?